$C^1$-extension of subharmonic functions from closed Jordan domains in~$\mathbb R^2$
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1165-1178
Voir la notice de l'article provenant de la source Math-Net.Ru
For Jordan domains $D$ in $\mathbb R^2$ of Dini–Lyapunov type, we show that any function subharmonic in $D$ and of class $C^1(\overline D)$ can be extended to a function subharmonic and of class $C^1$ on the whole of $\mathbb R^2$ with a uniform estimate of its gradient. We construct a large class of Jordan domains (including domains with $C^1$-smooth boundaries) for which this extension property fails. We also prove a localization theorem on $C^1$-subharmonic extension from any closed Jordan domain.
@article{IM2_2004_68_6_a5,
author = {M. S. Mel'nikov and P. V. Paramonov},
title = {$C^1$-extension of subharmonic functions from closed {Jordan} domains in~$\mathbb R^2$},
journal = {Izvestiya. Mathematics },
pages = {1165--1178},
publisher = {mathdoc},
volume = {68},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/}
}
TY - JOUR AU - M. S. Mel'nikov AU - P. V. Paramonov TI - $C^1$-extension of subharmonic functions from closed Jordan domains in~$\mathbb R^2$ JO - Izvestiya. Mathematics PY - 2004 SP - 1165 EP - 1178 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/ LA - en ID - IM2_2004_68_6_a5 ER -
M. S. Mel'nikov; P. V. Paramonov. $C^1$-extension of subharmonic functions from closed Jordan domains in~$\mathbb R^2$. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1165-1178. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/