Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2004_68_6_a5, author = {M. S. Mel'nikov and P. V. Paramonov}, title = {$C^1$-extension of subharmonic functions from closed {Jordan} domains in~$\mathbb R^2$}, journal = {Izvestiya. Mathematics }, pages = {1165--1178}, publisher = {mathdoc}, volume = {68}, number = {6}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/} }
TY - JOUR AU - M. S. Mel'nikov AU - P. V. Paramonov TI - $C^1$-extension of subharmonic functions from closed Jordan domains in~$\mathbb R^2$ JO - Izvestiya. Mathematics PY - 2004 SP - 1165 EP - 1178 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/ LA - en ID - IM2_2004_68_6_a5 ER -
M. S. Mel'nikov; P. V. Paramonov. $C^1$-extension of subharmonic functions from closed Jordan domains in~$\mathbb R^2$. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1165-1178. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a5/
[1] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Matem. sb., 192:4 (2001), 37–58 | MR | Zbl
[2] Gardiner S. J., Gustafsson A., “Smooth potentials with prescribed boundary behaviour”, Publ. Matem., 48:1 (2004), 241–249 | MR | Zbl
[3] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[4] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992 | MR | Zbl
[5] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[7] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–490 | MR