Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1157-1163
Voir la notice de l'article provenant de la source Math-Net.Ru
A lower bound is found for the maximum modulus of the Riemann zeta function on segments of the critical line whose length does not exceed the double logarithm of the distance from the centre of the segment to the origin.
@article{IM2_2004_68_6_a4,
author = {A. A. Karatsuba},
title = {Lower bounds for the maximum modulus of the {Riemann} zeta function on short segments of the critical line},
journal = {Izvestiya. Mathematics },
pages = {1157--1163},
publisher = {mathdoc},
volume = {68},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/}
}
TY - JOUR AU - A. A. Karatsuba TI - Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line JO - Izvestiya. Mathematics PY - 2004 SP - 1157 EP - 1163 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/ LA - en ID - IM2_2004_68_6_a4 ER -
A. A. Karatsuba. Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1157-1163. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/