Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1157-1163.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lower bound is found for the maximum modulus of the Riemann zeta function on segments of the critical line whose length does not exceed the double logarithm of the distance from the centre of the segment to the origin.
@article{IM2_2004_68_6_a4,
     author = {A. A. Karatsuba},
     title = {Lower bounds for the maximum modulus of the {Riemann} zeta function on short segments of the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {1157--1163},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1157
EP  - 1163
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/
LA  - en
ID  - IM2_2004_68_6_a4
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line
%J Izvestiya. Mathematics 
%D 2004
%P 1157-1163
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/
%G en
%F IM2_2004_68_6_a4
A. A. Karatsuba. Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1157-1163. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a4/

[1] Karatsuba A. A., “O nizhnikh otsenkakh dzeta-funktsii Rimana”, Dokl. RAN, 376:1 (2001), 15–16 | MR | Zbl

[2] Karatsuba A. A., “O nizhnikh otsenkakh maksimuma modulya $\zeta(s)$ v malykh oblastyakh kriticheskoi polosy”, Matem. zametki, 70:5 (2001), 796–798 | MR

[3] Garaev M. Z., “Concerning the Karatsuba conjectures”, Taiwanes J. of Math., 6:4 (2002), 573–580 | MR | Zbl

[4] Balasubramanian R., “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$, IV”, Hardy–Ramanujan J., 9 (1986), 1–10 | MR | Zbl

[5] Ramachandra K., On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Springer-Verlag, N.Y.–Berlin, 1995 | MR

[6] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986 | MR | Zbl

[7] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949

[8] Temme N. M., Special functions, J. Wiley Sons, N.Y., 1996 | MR | Zbl

[9] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[10] Shao-Ji Feng, “On Karatsuba Conjecture and the Lindelöf Hypothesis”, Acta Arithmetica, 114:3 (2004), 295–300 | DOI | MR | Zbl