Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1143-1156

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate conditions for the uniform approximability of functions by polynomial solutions of second-order elliptic equations with constant complex coefficients on compact sets in $\mathbb R^2$. Some new results of a reductive nature are obtained which ensure that a compact set is an approximation compactum if certain special subsets with a simpler topological structure have this property.
@article{IM2_2004_68_6_a3,
     author = {A. B. Zaitsev},
     title = {Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets},
     journal = {Izvestiya. Mathematics },
     pages = {1143--1156},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1143
EP  - 1156
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/
LA  - en
ID  - IM2_2004_68_6_a3
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
%J Izvestiya. Mathematics 
%D 2004
%P 1143-1156
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/
%G en
%F IM2_2004_68_6_a3
A. B. Zaitsev. Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1143-1156. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/