Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1143-1156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate conditions for the uniform approximability of functions by polynomial solutions of second-order elliptic equations with constant complex coefficients on compact sets in $\mathbb R^2$. Some new results of a reductive nature are obtained which ensure that a compact set is an approximation compactum if certain special subsets with a simpler topological structure have this property.
@article{IM2_2004_68_6_a3,
     author = {A. B. Zaitsev},
     title = {Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets},
     journal = {Izvestiya. Mathematics },
     pages = {1143--1156},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1143
EP  - 1156
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/
LA  - en
ID  - IM2_2004_68_6_a3
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets
%J Izvestiya. Mathematics 
%D 2004
%P 1143-1156
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/
%G en
%F IM2_2004_68_6_a3
A. B. Zaitsev. Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1143-1156. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/

[1] Walsh J. L., “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35 (1929), 499–544 | DOI | Zbl

[2] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[3] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl

[4] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl

[5] Karmona Kh. Kh., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi polinomami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Matem. sb., 193:10 (2002), 75–98 | MR

[6] Buave A., Gote P. M., Paramonov P. V., “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. matem., 68:3 (2004), 15–28 | MR

[7] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomami spetsialnykh klassov na kompaktakh v $\mathbb R^2$”, Matem. zametki, 71:1 (2002), 75–87 | MR | Zbl

[8] O'Farrell A. G., “A generalized Walsh–Lebesgue Theorem”, Proc. Roy. Soc. Edinburg. Sect. A, 73:1 (1975), 231–234 | MR | Zbl

[9] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na kompaktakh v $\mathbb R^2$”, Matem. zametki, 74:1 (2003), 41–51 | MR | Zbl

[10] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977 | MR

[12] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.-L., 1950