Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2004_68_6_a3, author = {A. B. Zaitsev}, title = {Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets}, journal = {Izvestiya. Mathematics }, pages = {1143--1156}, publisher = {mathdoc}, volume = {68}, number = {6}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/} }
TY - JOUR AU - A. B. Zaitsev TI - Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets JO - Izvestiya. Mathematics PY - 2004 SP - 1143 EP - 1156 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/ LA - en ID - IM2_2004_68_6_a3 ER -
%0 Journal Article %A A. B. Zaitsev %T Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets %J Izvestiya. Mathematics %D 2004 %P 1143-1156 %V 68 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/ %G en %F IM2_2004_68_6_a3
A. B. Zaitsev. Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1143-1156. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a3/
[1] Walsh J. L., “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35 (1929), 499–544 | DOI | Zbl
[2] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl
[3] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl
[4] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl
[5] Karmona Kh. Kh., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi polinomami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Matem. sb., 193:10 (2002), 75–98 | MR
[6] Buave A., Gote P. M., Paramonov P. V., “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. matem., 68:3 (2004), 15–28 | MR
[7] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomami spetsialnykh klassov na kompaktakh v $\mathbb R^2$”, Matem. zametki, 71:1 (2002), 75–87 | MR | Zbl
[8] O'Farrell A. G., “A generalized Walsh–Lebesgue Theorem”, Proc. Roy. Soc. Edinburg. Sect. A, 73:1 (1975), 231–234 | MR | Zbl
[9] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na kompaktakh v $\mathbb R^2$”, Matem. zametki, 74:1 (2003), 41–51 | MR | Zbl
[10] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl
[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977 | MR
[12] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.-L., 1950