General algebraic identities for the Nijenhuis and Haantjes tensors
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1129-1141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain general algebraic identities for the Nijenhuis and Haantjes tensors on an arbitrary manifold $M^n$. For $n=3$ we derive special algebraic identities connected with the Cartan–Killing form $(u,v)_H$.
@article{IM2_2004_68_6_a2,
     author = {O. I. Bogoyavlenskii},
     title = {General algebraic identities for the {Nijenhuis} and {Haantjes} tensors},
     journal = {Izvestiya. Mathematics },
     pages = {1129--1141},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a2/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - General algebraic identities for the Nijenhuis and Haantjes tensors
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1129
EP  - 1141
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a2/
LA  - en
ID  - IM2_2004_68_6_a2
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T General algebraic identities for the Nijenhuis and Haantjes tensors
%J Izvestiya. Mathematics 
%D 2004
%P 1129-1141
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a2/
%G en
%F IM2_2004_68_6_a2
O. I. Bogoyavlenskii. General algebraic identities for the Nijenhuis and Haantjes tensors. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1129-1141. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a2/

[1] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Proc. Kon. Ned. Akad. Amsterdam, 54 (1951), 200–212 | MR | Zbl

[2] Nijenhuis A., “Jacobi-type identities for bilinear differential concomitants of certain tensor fields”, Proc. Kon. Ned. Akad. Amsterdam, 58 (1955), 390–403 | MR | Zbl

[3] Haantjes J., “On $X_{m}$-forming sets of eigenvectors”, Proc. Kon. Ned. Akad. Amsterdam, 58 (1955), 158–162 | MR | Zbl

[4] Bogoyavlenskij O. I., “Existence of Riemann invariants and Hamiltonian structures”, C. R. Math. Rep. Acad. Sci. Canada, 15 (1993), 143–148 | MR | Zbl

[5] Bogoyavlenskij O. I., “Necessary conditions for existence of non-degenerate Hamiltonian structures”, Commun. Math. Phys., 182 (1996), 253–290 | DOI | MR

[6] Bogoyavlenskij O. I., “Courant's problems and their extensions”, Proceedings of VII International Conference on hyperbolic problems, International Series of Numerical Mathematics, 129, Birkhauser Verlag, Basel, 1999, 97–104 | MR | Zbl

[7] Lichnerowicz A., “Les varietes de Poisson et leurs algebres de Lie associees”, J. Diff. Geom., 12 (1977), 253–300 | MR | Zbl

[8] Nijenhuis A., Richardson R. W., “Deformations of Lie algebra structures”, J. Math. Mech., 17 (1967), 89–105 | MR | Zbl

[9] Newlander A., Nirenberg L., “Complex analytic coordinates in almost-complex manifolds”, Ann. Math., 65 (1957), 391–404 | DOI | MR | Zbl

[10] DeBarros C. M., “Varietes presque hor-complexes”, C. R. Acad. Sc. Paris, 260 (1965), 1543–1546 | MR

[11] Lehmann-Lejeune J., “Etude des formes differentielles liee a certaines $G$-structures”, C. R. Acad. Sc. Paris, 260 (1965), 1838–1841 | MR | Zbl

[12] Lavandier J., “Tenseur de Nijenhuis et integralite des $G$-structures definies par une 1-forme vectorielle, $O$-deformable”, C. R. Acad. Sc. Paris, 318 (1994), 135–138 | MR | Zbl

[13] Gelfand I. M., Dorfman I. Ya., “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego prilozh., 14:3 (1980), 71–74 | MR | Zbl

[14] Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of the Poisson–Nijenhuis manifolds, Quaderno S/19. Preprint, Universita di Milano, 1984

[15] Magri F., “A simple model of an integrable Hamiltonian system”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[16] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. Henri Poincare, 53 (1990), 35–81 | MR | Zbl

[17] Magri F., Morosi C., Ragnisco O., “Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications”, Commun. Math. Phys., 99 (1985), 115–140 | DOI | MR | Zbl

[18] Magri F., Morosi C., Tondo G., “Nijenhuis $G$-manifold and Lenard bicomplexes: a new approach to $KP$ systems”, Commun. Math. Phys., 115 (1988), 457–475 | DOI | MR | Zbl

[19] Stone A. P., “Generalized conservation laws”, Proceed. Amer. Math. Soc., 18 (1967), 868–873 | DOI | MR | Zbl

[20] Stone A. P., “Some remarks on the Nijenhuis tensor”, Can. J. Math., 25 (1973), 903–907 | MR | Zbl

[21] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[22] Bogoyavlenskij O. I., “Necessary conditions for the existence of conservation laws for systems of partial differential equations”, Symposia Gaussiana Conf., Walter de Gruyter Co., Berlin–N.Y., 1995, 359–375 | MR | Zbl