Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1063-1117
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behaviour at boundary points of a solution of the Dirichlet problem with continuous boundary function for the Euler equation generated by the Lagrangian $|\nabla u|^{p(x)}/p(x)$ with variable$p=p(x)$ that has logarithmic modulus of continuity and satisfies the condition $1$. We obtain a regularity criterion for a boundary point of Wiener type, an estimate for the modulus of continuity of the solution near a regular boundary point, and geometric conditions for regularity.
@article{IM2_2004_68_6_a0,
author = {Yu. A. Alkhutov and O. V. Krasheninnikova},
title = {Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition},
journal = {Izvestiya. Mathematics },
pages = {1063--1117},
publisher = {mathdoc},
volume = {68},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - O. V. Krasheninnikova TI - Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition JO - Izvestiya. Mathematics PY - 2004 SP - 1063 EP - 1117 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/ LA - en ID - IM2_2004_68_6_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A O. V. Krasheninnikova %T Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition %J Izvestiya. Mathematics %D 2004 %P 1063-1117 %V 68 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/ %G en %F IM2_2004_68_6_a0
Yu. A. Alkhutov; O. V. Krasheninnikova. Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1063-1117. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/