Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1063-1117

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour at boundary points of a solution of the Dirichlet problem with continuous boundary function for the Euler equation generated by the Lagrangian $|\nabla u|^{p(x)}/p(x)$ with variable$p=p(x)$ that has logarithmic modulus of continuity and satisfies the condition $1$. We obtain a regularity criterion for a boundary point of Wiener type, an estimate for the modulus of continuity of the solution near a regular boundary point, and geometric conditions for regularity.
@article{IM2_2004_68_6_a0,
     author = {Yu. A. Alkhutov and O. V. Krasheninnikova},
     title = {Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1117},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - O. V. Krasheninnikova
TI  - Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1063
EP  - 1117
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/
LA  - en
ID  - IM2_2004_68_6_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A O. V. Krasheninnikova
%T Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition
%J Izvestiya. Mathematics 
%D 2004
%P 1063-1117
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/
%G en
%F IM2_2004_68_6_a0
Yu. A. Alkhutov; O. V. Krasheninnikova. Continuity at boundary points of solutions of quasilinear elliptic equations with a~non-standard growth condition. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1063-1117. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a0/