A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Funk–Hecke theorem states that for integral operators whose kernels depend only on the distance between points in spherical geometry and where the integral is taken over the surface of a hypersphere, every surface spherical harmonic is an eigenvector. In this paper we extend this theorem to the case of non-compact Lobachevsky spaces. We compute the corresponding eigenvalue in some physically important cases.
@article{IM2_2004_68_5_a7,
     author = {T. V. Shtepina},
     title = {A~generalization of the {Funk--Hecke} theorem to the case of hyperbolic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1051--1061},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/}
}
TY  - JOUR
AU  - T. V. Shtepina
TI  - A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1051
EP  - 1061
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/
LA  - en
ID  - IM2_2004_68_5_a7
ER  - 
%0 Journal Article
%A T. V. Shtepina
%T A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
%J Izvestiya. Mathematics 
%D 2004
%P 1051-1061
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/
%G en
%F IM2_2004_68_5_a7
T. V. Shtepina. A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/

[1] Funk P., “Beiträge zur Theorie der Kugelfunktionen”, Math. Ann., 77 (1916), 136–152 | DOI | MR

[2] Hecke E., “Über orthogonalinvariante Integralgleichungen”, Math. Ann., 78 (1918), 398–404 | DOI | MR

[3] Erdélyi A., “Die Funksche Integralgleichung der Kugelflächenfunktionen und ihreÜbertragung auf dieÜberkugel”, Math. Ann., 115 (1938), 456–465 | DOI | MR | Zbl

[4] Vladimirov V. S., “Ob integralnom uravnenii, svyazannom so sfericheskimi funktsiyami”, Nauchnye doklady vysshei shkoly. Fiz.-mat. nauki., 1958, no. 6, 142–146

[5] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[6] Burskii V. P., Shtepina T. V., “O spektre ekvivariantnogo rasshireniya operatora Laplasa v share”, Ukr. matem. zhurn., 52:11 (2000), 1473–1483 | MR | Zbl

[7] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[8] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii. Vyp. 5, Fizmatgiz, M., 1962

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974

[10] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964 | MR

[11] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[12] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, ed. M. Abramovits, Nauka, M., 1979 | MR