A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061
Voir la notice de l'article provenant de la source Math-Net.Ru
The well-known Funk–Hecke theorem states that for integral operators whose kernels depend only on the distance between points in spherical geometry and where the integral is taken over the surface of a hypersphere, every surface spherical harmonic is an eigenvector. In this paper we extend this theorem to the case of non-compact Lobachevsky spaces. We compute the corresponding eigenvalue in some physically important cases.
@article{IM2_2004_68_5_a7,
author = {T. V. Shtepina},
title = {A~generalization of the {Funk--Hecke} theorem to the case of hyperbolic spaces},
journal = {Izvestiya. Mathematics },
pages = {1051--1061},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/}
}
T. V. Shtepina. A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/