A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Funk–Hecke theorem states that for integral operators whose kernels depend only on the distance between points in spherical geometry and where the integral is taken over the surface of a hypersphere, every surface spherical harmonic is an eigenvector. In this paper we extend this theorem to the case of non-compact Lobachevsky spaces. We compute the corresponding eigenvalue in some physically important cases.
@article{IM2_2004_68_5_a7,
     author = {T. V. Shtepina},
     title = {A~generalization of the {Funk--Hecke} theorem to the case of hyperbolic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1051--1061},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/}
}
TY  - JOUR
AU  - T. V. Shtepina
TI  - A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1051
EP  - 1061
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/
LA  - en
ID  - IM2_2004_68_5_a7
ER  - 
%0 Journal Article
%A T. V. Shtepina
%T A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
%J Izvestiya. Mathematics 
%D 2004
%P 1051-1061
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/
%G en
%F IM2_2004_68_5_a7
T. V. Shtepina. A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1051-1061. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a7/