Old and new examples of surfaces of general type with $p_g=0$
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 965-1008.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate surfaces of general type with geometric genus $p_g=0$ which may be given as Galois coverings of the projective plane branched over an arrangement of lines with Galois group $G=(\mathbb Z/q\mathbb Z)^k$, where $k\geqslant 2$ and $q$ is a prime. Examples of such coverings include the classical Godeaux surface, Campedelli surfaces, Burniat surfaces, and a new surface $X$ with invariants $K_X^2=6$ and $(\mathbb Z/3\mathbb Z)^3\subset\operatorname{Tors}(X)$. We prove that the automorphism group of a generic surface of Campedelli type is isomorphic to $(\mathbb Z/2\mathbb Z)^3$. We describe the irreducible components of the moduli space containing the Burniat surfaces. We also show that the Burniat surface $S$ with $K_S^2=2$ has torsion group $\operatorname{Tors}(S)\simeq(\mathbb Z/2\mathbb Z)^3$ (and hence belongs to the family of Campedelli surfaces), that is, the corresponding statement in [9], [4], and [1, p. 237], about the torsion group of the Burniat surface $S$ with $K_S^2=2$ is not correct.
@article{IM2_2004_68_5_a4,
     author = {Vik. S. Kulikov},
     title = {Old and new examples of surfaces of general type with $p_g=0$},
     journal = {Izvestiya. Mathematics },
     pages = {965--1008},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Old and new examples of surfaces of general type with $p_g=0$
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 965
EP  - 1008
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a4/
LA  - en
ID  - IM2_2004_68_5_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Old and new examples of surfaces of general type with $p_g=0$
%J Izvestiya. Mathematics 
%D 2004
%P 965-1008
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a4/
%G en
%F IM2_2004_68_5_a4
Vik. S. Kulikov. Old and new examples of surfaces of general type with $p_g=0$. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 965-1008. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a4/

[1] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verlag, Berlin–Heidelberg– N.Y.–Tokyo, 1984 | MR | Zbl

[2] Burniat P., “Sur les surfaces de genre $P_{12}>0$”, Ann. Pura Appl., 71:4 (1966), 1–24 | DOI | MR | Zbl

[3] Campedelli L., “Sopra alcuni piani doppi notevoli con curve di diramazione del decimo ordine”, Atti Acad. Naz. Lincei, 15 (1932), 536–542 | Zbl

[4] Dolgachev I., “Algebraic surfaces with $q=p_g=0$”, Algebraic surfaces, Liguori, Napoli, 1971

[5] Godeaux L., “Sur une surface algebrique de genere zero et bigenere deux”, Atti. Acad. Naz. Lincei, 14 (1971), 479–481

[6] Grauert H., Remmert R., “Komplexe Raume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[7] Kharlamov V., Kulikov Vik. S., “Deformation inequivalent complex conjugated complex structures and applications”, Turk. J. Math., 26 (2002), 1–25 | MR | Zbl

[8] Miyaoka Y., “On numerical Campedelli surfaces”, Complex analysis and Algebraic geometry, Iwanami Shoten, Tokyo, 1977, 113–118 | MR

[9] Peters C., “On certain examples of surfaces with $p_g=0$”, Nagoya Math. J., 66 (1977), 109–120 | MR

[10] Mendes Lopes M., Pardini R., “A connected component of the moduli space of surfaces with $p_g=0$”, Topology, 40:5 (2001), 977–991 | DOI | MR | Zbl