Towards an intersection theory on Hurwitz spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 935-964.

Voir la notice de l'article provenant de la source Math-Net.Ru

Moduli spaces of algebraic curves are closely related to Hurwitz spaces, that is, spaces of meromorphic functions on curves. All of these spaces naturally arise in numerous problems of algebraic geometry and mathematical physics, especially in connection with string theory and Gromov–Witten invariants. In particular, the classical Hurwitz problem of enumerating the topologically distinct ramified coverings of the sphere with prescribed ramification type reduces to the study of the geometry and topology of these spaces. The cohomology rings of such spaces are complicated even in the simple case of rational curves and functions. However, the cohomology classes most important for applications (namely, the classes Poincaré dual to the strata of functions with given singularities) can be expressed in terms of relatively simple “basic” classes (which are, in a sense, tautological). The aim of the present paper is to identify these basic classes, to describe relations between them, and to find expressions for the strata in terms of them. Our approach is based on Thom's theory of universal polynomials of singularities, which has been extended to the case of multisingularities by the first author. Although the general Hurwitz problem still remains open, our approach enables one to achieve significant progress towards its solution and an understanding of the geometry and topology of Hurwitz spaces.
@article{IM2_2004_68_5_a3,
     author = {M. E. Kazarian and S. K. Lando},
     title = {Towards an intersection theory on {Hurwitz} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {935--964},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a3/}
}
TY  - JOUR
AU  - M. E. Kazarian
AU  - S. K. Lando
TI  - Towards an intersection theory on Hurwitz spaces
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 935
EP  - 964
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a3/
LA  - en
ID  - IM2_2004_68_5_a3
ER  - 
%0 Journal Article
%A M. E. Kazarian
%A S. K. Lando
%T Towards an intersection theory on Hurwitz spaces
%J Izvestiya. Mathematics 
%D 2004
%P 935-964
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a3/
%G en
%F IM2_2004_68_5_a3
M. E. Kazarian; S. K. Lando. Towards an intersection theory on Hurwitz spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 935-964. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a3/

[1] Ekedahl T., Lando S. K., Shapiro M., Vainshtein A., “On Hurwitz numbers and Hodge integrals”, C. R. Acad. Sci. Paris. Sér. I. Math., 328 (1999), 1175–1180 | MR | Zbl

[2] Ekedahl T., Lando S. K., Shapiro M., Vainshtein A., “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. math., 146 (2001), 297–327 | DOI | MR | Zbl

[3] Fulton V., Teoriya peresechenii, Mir, M., 1994

[4] Giusti M., “Classification des singularités isolées simples d'intersections complètes”, Proceedings of Symposia in Pure Mathematics. Part 1, 40 (1983), 457–494 | MR | Zbl

[5] Goryunov V. V., “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 167–206 | MR

[6] Goulden I. P., Jackson D. M., “Transitive factorisation into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl

[7] Harris J., Mumford D., “On the Kodaira dimension of the moduli space of curves”, Invent. Math., 67:1 (1982), 23–88 | DOI | MR

[8] Hurwitz A., “Über Riemann'sche Flächen mit gegebenen Verzweigungpunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[9] Hurwitz A., “Über die Anzal der Riemann'sche Flächen mit gegebenen Verzweigungpunkten”, Math. Ann., 55 (1902), 51–60 | MR

[10] Kazaryan M. E., “Multiosobennosti, kobordizmy i perechislitelnaya geometriya”, UMN, 58:4 (2003), 665–724 | MR | Zbl

[11] Kazaryan M. E., Morin maps and their characteristic classes, http://www.mi.ras.ru/~kazarian

[12] Kazaryan M. E., “Classifying spaces of singularities and Thom polynomials”, New developments in singularity theory, NATO Sci. Ser. II. Math. Phys. Chem., 21, Kluwer Acad. Publ., Dordrecht, 2001, 117–134 | MR

[13] Kazaryan M. E., “Otnositelnaya teoriya Morsa odnomernykh sloenii i tsiklicheskie gomologii”, Funktsion. analiz i ego prilozh., 31:1 (1997), 20–31 | MR | Zbl

[14] Lando S. K., “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3 (2002), 463–533 | MR | Zbl

[15] Lando S. K., Zvonkin D. A., “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funktsion. analiz i ego prilozh., 33:3 (1999), 178–188 | MR | Zbl

[16] Lando S. K., Zvonkine D., Counting ramified coverings and intersection theory on spaces of rational functions, I, E-print math.AG/0303218

[17] Manin Yu., Zograf P., “Invertible cohomological field theories and Weil-Petersson volumes”, Ann. Inst. Fourier (Grenoble), 50:2 (2000), 519–535 | MR | Zbl

[18] Mumford D., “Towards an enumerative geometry on the moduli spaces of curves”, Progress in Math., 36, Birkhüaser, Boston, 1983, 271–328 | MR

[19] Natanzon S. M., Turaev V., “A compactification of the Hurwitz space”, Topology, 38 (1999), 889–914 | DOI | MR | Zbl

[20] Tom R., “Nekotorye svoistva “v tselom” differentsiruemykh mnogoobrazii”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 293–351

[21] Zvonkine D., “Multiplicities of the Lyashko–Looijenga map on its strata”, C. R. Acad. Sci. Sér. I, 324 (1997), 1349–1353 | MR | Zbl

[22] Zvonkine D., Counting ramified coverings and intersection theory on Hurwitz spaces, II (Local structures of Hurwitz spaces and combinatorial results), E-print math.AG/0304251 | MR