The collapse theorem for theories of $I$-reducible algebraic systems
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 911-933

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $I$-reducible algebraic systems and the theory of $I$-reducible systems. We show that the lack of an independent formula in a theory is not a necessary condition for the $I$-reducibility of its models, even for extensions of Presburger arithmetic. In particular, there is an entire class of theories that are extensions of Presburger arithmetic in which there is an independent formula and which have $I$-reducible models. We show that the $I$-reducibility of a small algebraic systems automatically implies that every formula is equivalent in it to a $P$-restricted formula, and thus the collapse theorem holds for the theories of such systems.
@article{IM2_2004_68_5_a2,
     author = {S. M. Dudakov},
     title = {The collapse theorem for theories of $I$-reducible algebraic systems},
     journal = {Izvestiya. Mathematics },
     pages = {911--933},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a2/}
}
TY  - JOUR
AU  - S. M. Dudakov
TI  - The collapse theorem for theories of $I$-reducible algebraic systems
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 911
EP  - 933
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a2/
LA  - en
ID  - IM2_2004_68_5_a2
ER  - 
%0 Journal Article
%A S. M. Dudakov
%T The collapse theorem for theories of $I$-reducible algebraic systems
%J Izvestiya. Mathematics 
%D 2004
%P 911-933
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a2/
%G en
%F IM2_2004_68_5_a2
S. M. Dudakov. The collapse theorem for theories of $I$-reducible algebraic systems. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 911-933. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a2/