Local formulae for combinatorial Pontryagin classes
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 861-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p(|K|)$ be the characteristic class of a combinatorial manifold $K$ given by a polynomial $p$ in the rational Pontryagin classes of $K$. We prove that for any polynomial $p$ there is a function taking each combinatorial manifold $K$ to a cycle $z_p(K)$ in its rational simplicial chains such that: 1) the Poincaré dual of $z_p(K)$ represents the cohomology class $p(|K|)$; 2) the coefficient of each simplex $\Delta$ in the cycle $z_p(K)$ is determined solely by the combinatorial type of $\operatorname{link}\Delta$. We explicitly describe all such functions for the first Pontryagin class. We obtain estimates for the denominators of the coefficients of the simplices in the cycles $z_p(K)$.
@article{IM2_2004_68_5_a1,
     author = {A. A. Gaifullin},
     title = {Local formulae for combinatorial {Pontryagin} classes},
     journal = {Izvestiya. Mathematics },
     pages = {861--910},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Local formulae for combinatorial Pontryagin classes
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 861
EP  - 910
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/
LA  - en
ID  - IM2_2004_68_5_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Local formulae for combinatorial Pontryagin classes
%J Izvestiya. Mathematics 
%D 2004
%P 861-910
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/
%G en
%F IM2_2004_68_5_a1
A. A. Gaifullin. Local formulae for combinatorial Pontryagin classes. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 861-910. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/

[1] Gabrielov A. M., Gelfand I. M., Losik M. V., “Kombinatornoe vychislenie kharakteristicheskikh klassov”, Funktsion. analiz i ego prilozh., 9:2 (1975), 12–28 ; 3, 5–26 | MR | Zbl | Zbl

[2] Gabrielov A. M., Gelfand I. M., Losik M. V., “Lokalnaya kombinatornaya formula dlya pervogo klassa Pontryagina”, Funktsion. analiz i ego prilozh., 10:1 (1976), 14–17 | MR | Zbl

[3] Gelfand I. M., MacPherson R. D., “A combinatorial formula for the Pontrjagin classes”, Bulletin of the Amer. Math. Soc., 26:2 (1992), 304–309 | DOI | MR | Zbl

[4] Cheeger J., “Spectral geometry of singular Riemannian spaces”, J. Diff. Geom., 18:4 (1983), 575–657 | MR | Zbl

[5] Levitt N., Rourke C., “The existence of combinatorial formulae for characteristic classes”, Trans. Amer. Math. Soc., 239 (1978), 391–397 | DOI | MR | Zbl

[6] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[7] Alexander J. W., “The combinatorial theory of complexes”, Ann. Math., 31:2 (1930), 292–320 | DOI | MR | Zbl

[8] Rourke C. P., Sanderson B. J., “Block bundles, I”, Ann. Math., 87:2 (1968), 1–28 | DOI | MR | Zbl

[9] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl

[10] Pachner U., “P.L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12:2 (1991), 129–145 | MR | Zbl

[11] Buchstaber V. M., Panov T. E., Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, 24, Providence, Amer. Math. Soc. R. I., 2002 | MR | Zbl

[12] Springer-Verlag, 1976 | Zbl

[13] Ziegler G., Lectures on Polytopes, Graduate Texts in Math, 152, Springer-Verlag, N. Y., 1995 | MR | Zbl

[14] Kazarian M. È., “The Chern-Euler Number of Circle Bundle via Singularity Theory”, Mathematica Scandinavica, 82 (1998), 207–236 | MR | Zbl

[15] Vasilev V. A., Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000

[16] Kühnel W., Banchoff T. F., “The 9-vertex complex projective plane”, Math. Intell., 5:3 (1983), 11–22 | DOI | MR | Zbl

[17] Kühnel W., Lassmann G., “The unique 3-neighborly 4-manifold with few vertices”, J. Combin. Theory. Ser. A, 35:2 (1983), 173–184 | DOI | MR | Zbl

[18] Grünbaum B., Sreedharan V. P., “An enumeration of simplicial 4-polytopes with 8 vertices”, J. Combin. Theory. Ser. A, 2 (1967), 437–465 | DOI | MR | Zbl

[19] Kazaryan M. E., “Kharakteristicheskie klassy lagranzhevykh i lezhandrovykh osobennostei”, UMN, 50:4 (1995), 45–70 | MR | Zbl

[20] Zeeman E. C., “Unknotting combinatorial balls”, Ann. Math., 78:3 (1963), 501–526 | DOI | MR | Zbl