Local formulae for combinatorial Pontryagin classes
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 861-910

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p(|K|)$ be the characteristic class of a combinatorial manifold $K$ given by a polynomial $p$ in the rational Pontryagin classes of $K$. We prove that for any polynomial $p$ there is a function taking each combinatorial manifold $K$ to a cycle $z_p(K)$ in its rational simplicial chains such that: 1) the Poincaré dual of $z_p(K)$ represents the cohomology class $p(|K|)$; 2) the coefficient of each simplex $\Delta$ in the cycle $z_p(K)$ is determined solely by the combinatorial type of $\operatorname{link}\Delta$. We explicitly describe all such functions for the first Pontryagin class. We obtain estimates for the denominators of the coefficients of the simplices in the cycles $z_p(K)$.
@article{IM2_2004_68_5_a1,
     author = {A. A. Gaifullin},
     title = {Local formulae for combinatorial {Pontryagin} classes},
     journal = {Izvestiya. Mathematics },
     pages = {861--910},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Local formulae for combinatorial Pontryagin classes
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 861
EP  - 910
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/
LA  - en
ID  - IM2_2004_68_5_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Local formulae for combinatorial Pontryagin classes
%J Izvestiya. Mathematics 
%D 2004
%P 861-910
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/
%G en
%F IM2_2004_68_5_a1
A. A. Gaifullin. Local formulae for combinatorial Pontryagin classes. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 861-910. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a1/