Certain extensions of completely splittable modules
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 833-850

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for $\operatorname{Ext}^1_{K\Sigma_r}(D^\lambda,D^\mu)$ where $K$ is a field of characteristic grater than 2, $\Sigma_r$ is the symmetric group of degree $r$, $D^\lambda$ and $D^\mu$ are simple $K\Sigma_r$-modules, $D^\lambda$ is a completely splittable module, and $\lambda$ does not strictly dominate $\mu$.
@article{IM2_2004_68_4_a5,
     author = {V. V. Shchigolev},
     title = {Certain extensions of completely splittable modules},
     journal = {Izvestiya. Mathematics },
     pages = {833--850},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a5/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - Certain extensions of completely splittable modules
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 833
EP  - 850
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a5/
LA  - en
ID  - IM2_2004_68_4_a5
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T Certain extensions of completely splittable modules
%J Izvestiya. Mathematics 
%D 2004
%P 833-850
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a5/
%G en
%F IM2_2004_68_4_a5
V. V. Shchigolev. Certain extensions of completely splittable modules. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 833-850. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a5/