Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2004_68_4_a1, author = {A. I. Bondal}, title = {A~symplectic groupoid of triangular bilinear forms and the braid group}, journal = {Izvestiya. Mathematics }, pages = {659--708}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a1/} }
A. I. Bondal. A~symplectic groupoid of triangular bilinear forms and the braid group. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 659-708. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a1/
[1] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1984 | MR
[2] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR
[3] Bondal A. I., Kvadratichnye algebry i kogerentnye puchki, Dis. $\dots$ kand. fiz.-mat. nauk, MIAN SSSR, M., 1989
[4] Bondal A. I., Non-commutative deformations and Poisson brackets on projective spaces, Preprint No 67, Max-Planck-Institut, Bonn, 1993
[5] Bondal A. I., “Simplekticheskie gruppoidy, svyazannye s gruppami Puassona–Li”, Tr. matem. in-ta im. V. A. Steklova RAN, 246 (2004), 43–63 | MR | Zbl
[6] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i ikh perestroiki”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1183–1205 | MR
[7] Bondal A. I., Kapranov M. M., “Osnaschennye triangulirovannye kategorii”, Matem. sb., 181:5 (1990), 669–684
[8] Bongartz K., “Schichten von Matrizen sind rationale Varietäten”, Math. Ann., 283 (1989), 53–64 | DOI | MR | Zbl
[9] Borho W., “Über Schichten halbeinfacher Lie-Algebren”, Invent. Math., 65 (1981), 283–317 | DOI | MR | Zbl
[10] Brieskorn E., “Automorphic sets and braids and singularities”, Contemp. Math., 78 (1988), 45–115 | MR | Zbl
[11] Cassels J. W. S., An introduction to Diophantine approximation, Cambridge University Press, Cambridge, 1957 | MR | Zbl
[12] Cecotti S., Vafa C., “On classification of $N=2$ supersymmetric theories”, Commun. Math. Phys., 158 (1993), 569–644 | DOI | MR | Zbl
[13] Coste A., Dazord P., Weinstein A., Groupoïdes Symplectiques, Publ. du Dept. de Math. de l'Universite de Lyon 1 | MR
[14] Deligne P., “Action de groupe des tresses sur une categorie”, Invent. Math., 128:1 (1997), 159–175 | DOI | MR | Zbl
[15] Diximier J., “Polarisation dans les algebres de Lie semi-simples complexes”, Bull. Sci. Math., 99 (1975), 45–63 | MR
[16] Durfee A., “Fibred knots and algebraic singularities”, Topology, 13 (1974), 47–59 | DOI | MR | Zbl
[17] Fock V. V., Dual Teichmueller spaces, E-print dg-ga/9702018
[18] Kapustin A., Orlov D., “Vertex algebras, mirror symmetry, and $D$-branes: the case of comlex tori”, Commun. Math. Phys., 233:1 (2003), 79–136 | DOI | MR | Zbl
[19] Karasev M. V., “Analogi ob'ektov teorii grupp Li dlya nelineinykh skobok Puassona”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 508–538 | MR | Zbl
[20] Knop F., “Über die Glattheit von Quotientenabbildungen”, Manuscripta Math., 56 (1986), 419–427 | DOI | MR | Zbl
[21] Kostant B., “Lie group representations in polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl
[22] Kontsevich M., “Homological algebra of mirror symmetry”, Proceedings of ICM (Zurich), Birkhauser, Basel, 1995, 120–139 | MR | Zbl
[23] Kraft H., “Parametrisierung von Konjugationsklassen in $\frak{s}\frak{l}_n$”, Math. Ann., 234 (1978), 209–220 | DOI | MR
[24] Magnus W., “Rings of Fricke Characters and Automorphism Groups of Free Groups”, Math. Z., 170 (1980), 91–103 | DOI | MR | Zbl
[25] Markov A. A., “Sur les formes binaires indefinies”, Math. Ann., 17 (1980), 379–399 | DOI
[26] Mackenzie K. C. H., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73 (1994), 415–452 | DOI | MR | Zbl
[27] Nogin D. Y., “Helices on some Fano threefolds: constructivity of semi-orthogonal bases of $K_0$”, Ann. Scient. Ec. Norm. Sup., 27 (1994), 1–44 | MR
[28] Panyushev D. I., “Regulyarnye elementy v prostranstvakh lineinykh predstavlenii reduktivnykh algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 411–419 | MR | Zbl
[29] Peterson D., Geometry of the Adjoint Representation of a Complex Semisimple Lie-Algebra, Ph. D. Thesis, Harvard University, 1978 | Zbl
[30] Seidel P., “Vanishing cycles and mutations”, Proceedings of the 3rd European Congress of Mathematics (Barcelona, 2000) | MR | Zbl
[31] Seidel P., “More about vanishing cycles and mutation”, Symplectic geometry and mirror symmetry, Proceedings of the 4th KIAS annual international conference (Seoul, South Korea, August 14–18, 2000), World Scientific, Singapore, 2001, 429–465 | MR | Zbl
[32] Ugaglia M., “On a Poisson structure on the space of Stokes matrices”, Int. Math. Res. Not., 1999, no. 9, 473–493 | DOI | MR | Zbl
[33] Verdier J.-L., “Categories derivees, SGA $4{\frac 12}$”, Lecture Notes in Math, 569, Springer-Verlag, N.Y., 1977, 262–311 | MR
[34] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc., 16 (1987), 101–104 | DOI | MR | Zbl
[35] Weinstein A., “The symplectic “category””, Lecture Notes in Math., 905, Springer-Verlag, N.Y., 1982, 45–51 | MR
[36] Weinstein A., Xu P., “Classical solutions of the Quantum Yang–Baxter Equation”, Commun. Math. Phys., 148 (1992), 309–343 | DOI | MR | Zbl
[37] Zakrzewski S., “Quantum and classical pseudogroups. Part 1: Union pseudogroups and their quantization”, Commun. Math. Phys., 134 (1990), 347–370 | DOI | MR | Zbl
[38] Zakrzewski S., “Quantum and classical pseudogroups. Part 2: Differential and symplectic pseudogroups”, Commun. Math. Phys., 134 (1990), 371–395 | DOI | MR | Zbl
[39] Zakrzewski S., “On relations between Poisson and quantum groups”, Lecture Notes in Math., 1510, Springer-Verlag, N.Y., 1992, 326–334 | MR
[40] Boalch P. P., “Stokes matrices, Poisson–Lie groups and Frobenius manifolds”, Invent. Math., 146:3 (2001), 479–506 | DOI | MR | Zbl