On a~fourth-order problem with spectral and physical parameters in the boundary condition
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 645-658

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following fourth-order boundary-value problem: \begin{gather*} [(py'')'-qy']'=\lambda ry, \\ y(0)=y'(0)=y''(1)=[(py'')'-qy'](1)+\lambda my(1)=0 \end{gather*} with spectral parameter $\lambda\in\mathbb C$ and physical parameter $m\in\mathbb R$. We assign to this problem a linear pencil of bounded operators $T_m=T_m(\lambda)$ depending on the physical parameter $m$ and acting from $\mathcal H_2=\{y\mid y\in W_2^2[0,1],\ y(0)=y'(0)=0\}$ to the dual space $\mathcal H_{-2}$. We study the spectral properties of $T_m$ and use the results of this study to describe properties of the eigenvalues of the problem for various values of $m$. In particular, we establish asymptotics of these eigenvalues as $m\nearrow0$.
@article{IM2_2004_68_4_a0,
     author = {J. Ben Amara and A. A. Vladimirov},
     title = {On a~fourth-order problem with spectral and physical parameters in the boundary condition},
     journal = {Izvestiya. Mathematics },
     pages = {645--658},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/}
}
TY  - JOUR
AU  - J. Ben Amara
AU  - A. A. Vladimirov
TI  - On a~fourth-order problem with spectral and physical parameters in the boundary condition
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 645
EP  - 658
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/
LA  - en
ID  - IM2_2004_68_4_a0
ER  - 
%0 Journal Article
%A J. Ben Amara
%A A. A. Vladimirov
%T On a~fourth-order problem with spectral and physical parameters in the boundary condition
%J Izvestiya. Mathematics 
%D 2004
%P 645-658
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/
%G en
%F IM2_2004_68_4_a0
J. Ben Amara; A. A. Vladimirov. On a~fourth-order problem with spectral and physical parameters in the boundary condition. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 645-658. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/