On a~fourth-order problem with spectral and physical parameters in the boundary condition
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 645-658
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following fourth-order boundary-value problem:
\begin{gather*}
[(py'')'-qy']'=\lambda ry,
\\
y(0)=y'(0)=y''(1)=[(py'')'-qy'](1)+\lambda my(1)=0
\end{gather*}
with spectral parameter $\lambda\in\mathbb C$ and physical parameter $m\in\mathbb R$. We assign to this problem a linear pencil of bounded operators $T_m=T_m(\lambda)$ depending on the physical parameter $m$ and acting from $\mathcal H_2=\{y\mid y\in W_2^2[0,1],\ y(0)=y'(0)=0\}$ to the dual space $\mathcal H_{-2}$. We study the spectral properties of $T_m$ and use the results of this study to describe properties of the eigenvalues of the problem for various values of $m$. In particular, we establish asymptotics of these eigenvalues as $m\nearrow0$.
@article{IM2_2004_68_4_a0,
author = {J. Ben Amara and A. A. Vladimirov},
title = {On a~fourth-order problem with spectral and physical parameters in the boundary condition},
journal = {Izvestiya. Mathematics },
pages = {645--658},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/}
}
TY - JOUR AU - J. Ben Amara AU - A. A. Vladimirov TI - On a~fourth-order problem with spectral and physical parameters in the boundary condition JO - Izvestiya. Mathematics PY - 2004 SP - 645 EP - 658 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/ LA - en ID - IM2_2004_68_4_a0 ER -
J. Ben Amara; A. A. Vladimirov. On a~fourth-order problem with spectral and physical parameters in the boundary condition. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 645-658. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a0/