Semilocal Levi-flat extensions
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 619-641.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G\subset\mathbb C\times\mathbb R$ be a domain such that $G\times\mathbb R\subset\mathbb C^2$ is strictly pseudoconvex and let $U\subset bG$ be an open subset. We define the hull $\mathscr E(U)$ with respect to the algebra $\mathscr A(G\times\mathbb R)$ and study its properties. It is proved that every continuous function on $U$ can be extended to a continuous function on $\mathscr E(U)$ whose graph is locally foliated by holomorphic curves.
@article{IM2_2004_68_3_a9,
     author = {N. V. Shcherbina and G. Tomassini},
     title = {Semilocal {Levi-flat} extensions},
     journal = {Izvestiya. Mathematics },
     pages = {619--641},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/}
}
TY  - JOUR
AU  - N. V. Shcherbina
AU  - G. Tomassini
TI  - Semilocal Levi-flat extensions
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 619
EP  - 641
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/
LA  - en
ID  - IM2_2004_68_3_a9
ER  - 
%0 Journal Article
%A N. V. Shcherbina
%A G. Tomassini
%T Semilocal Levi-flat extensions
%J Izvestiya. Mathematics 
%D 2004
%P 619-641
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/
%G en
%F IM2_2004_68_3_a9
N. V. Shcherbina; G. Tomassini. Semilocal Levi-flat extensions. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 619-641. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/

[1] Bedford E., Gaveau B., “Envelopes of holomorphy of certain 2-spheres in $\mathbb C^2$”, Amer. J. Math., 105 (1983), 975–1009 | DOI | MR | Zbl

[2] Bedford E., Klingenberg W., “On the envelopes of holomorphy of a 2-sphere in $\mathbb C^2$”, J. Amer. Math. Soc., 4 (1991), 623–646 | DOI | MR | Zbl

[3] Bishop E., “Conditions for the analyticity of certain sets”, Mich. Math. J., 11 (1964), 289–304 | DOI | MR | Zbl

[4] Bremermann H. J., “Die Holomorphiehüllen der Tuben- und Halbtubengebiete”, Math. Ann., 127 (1954), 406–423 | DOI | MR | Zbl

[5] Chirka E. M., Shcherbina N. V., “Pseudoconvexity of rigid domains and foliations of hulls of graphs”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), XXI (1995), 707–735 | MR

[6] Eliashberg Y., “Filling by holomorphic discs and its applications”, London Math. Soc. Lecture Note Ser., 151, 1991, 45–67 | MR

[7] Eroshkin O. G., “Ob odnom topologicheskom svoistve kraya analiticheskogo podmnozhestva strogo psevdovypukloi oblasti v $\mathbb C^2$”, Matem. zametki, 49:5 (1991), 149–151 | MR | Zbl

[8] Gamelin T. W., Uniform algebras. Englewood Cliffs, Prentice-Hall, Inc., N. J., 1969 | MR | Zbl

[9] Kerzman N., “Hölder and $L^p$ estimates for solutions of ${\overline \partial }u=f$ in strongly pseudoconvex domains”, Comm. Pure Appl. Math., 24 (1971), 301–379 | DOI | MR

[10] Kiselman C., “The partial Legendre transformation for plurisubharmonic functions”, Invent. Math., 49 (1978), 137–148 | DOI | MR | Zbl

[11] Kruzhilin N. G., “Dvumernye sfery na granitsakh strogo psevdovypuklykh oblastei v $\mathbb C^2$”, Izv. AN SSSR. Ser. matem., 55:6 (1991), 1194–1237 | MR

[12] Narasimhan R., “The Levi problem for complex spaces, II”, Math. Ann., 146 (1962), 195–216 | DOI | MR | Zbl

[13] Shcherbina N., “On the polynomial hull of a graph”, Indiana Univ. Math. J., 42 (1993), 477–503 | DOI | MR | Zbl

[14] Shcherbina N., Tomassini G., “The Dirichlet problem for Levi-flat graphs over unbounded domains”, Internat. Math. Res. Notices, 1999, 111–151 | DOI | MR | Zbl

[15] Stout E. L., “Removable singularities for the boundary values of holomorphic functions”, Several complex varuables (Stockholm, 1987/1988), Math. Notes, 38, Princeton Univ. Press, Princeton – N. J., 1993, 600–629 | MR

[16] Casadio Tarabusi E., Trapani S., “Envelopes of holomorphy of Hartogs and circular domains”, Pacific J. Math., 149 (1991), 231–249 | MR | Zbl

[17] Tomassini G., “Sur les algèbres $A^0(\overline {D})$ et $A^\infty(\overline {D})$ d'un domaine pseudoconvexe borné”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), X (1983), 243–256 | MR