Semilocal Levi-flat extensions
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 619-641

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G\subset\mathbb C\times\mathbb R$ be a domain such that $G\times\mathbb R\subset\mathbb C^2$ is strictly pseudoconvex and let $U\subset bG$ be an open subset. We define the hull $\mathscr E(U)$ with respect to the algebra $\mathscr A(G\times\mathbb R)$ and study its properties. It is proved that every continuous function on $U$ can be extended to a continuous function on $\mathscr E(U)$ whose graph is locally foliated by holomorphic curves.
@article{IM2_2004_68_3_a9,
     author = {N. V. Shcherbina and G. Tomassini},
     title = {Semilocal {Levi-flat} extensions},
     journal = {Izvestiya. Mathematics },
     pages = {619--641},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/}
}
TY  - JOUR
AU  - N. V. Shcherbina
AU  - G. Tomassini
TI  - Semilocal Levi-flat extensions
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 619
EP  - 641
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/
LA  - en
ID  - IM2_2004_68_3_a9
ER  - 
%0 Journal Article
%A N. V. Shcherbina
%A G. Tomassini
%T Semilocal Levi-flat extensions
%J Izvestiya. Mathematics 
%D 2004
%P 619-641
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/
%G en
%F IM2_2004_68_3_a9
N. V. Shcherbina; G. Tomassini. Semilocal Levi-flat extensions. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 619-641. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a9/