Rationality of an Enriques--Fano threefold of genus five
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 607-618.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the rationality of a non-Gorenstein Fano threefold of Fano index one and degree eight having terminal cyclic quotient singularities and Picard group $\mathbb Z$. This threefold can be described as the quotient of a double covering of $\mathbb P^3$ ramified in a smooth quartic surface by an involution fixing eight different points.
@article{IM2_2004_68_3_a8,
     author = {I. A. Cheltsov},
     title = {Rationality of an {Enriques--Fano} threefold of genus five},
     journal = {Izvestiya. Mathematics },
     pages = {607--618},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Rationality of an Enriques--Fano threefold of genus five
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 607
EP  - 618
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/
LA  - en
ID  - IM2_2004_68_3_a8
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Rationality of an Enriques--Fano threefold of genus five
%J Izvestiya. Mathematics 
%D 2004
%P 607-618
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/
%G en
%F IM2_2004_68_3_a8
I. A. Cheltsov. Rationality of an Enriques--Fano threefold of genus five. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 607-618. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/

[1] Fano G., V. IV, Atti Congr. Int. Bologna, 1929

[2] Fano G., “Su alcune varietá algebriche a tre dimensioni a curve sezioni canoniche”, Scritti Mat. offerti a L. Berzolari, Ist. Mat. R. Univ. Pavia, 1936, 329–349

[3] Fano G., “Sulle varietá algebriche a tre dimensioni a curve sezioni canoniche”, Mem. Accad. d'Italiana, VIII (1937), 23–64

[4] Fano G., “Su alcune varietá algebriche a tre dimensioni razionali, e aventi curve-sezioni canoniche”, Comment. Math. Helv., 14 (1942), 202–211 | DOI | MR | Zbl

[5] Shokurov V. V., “Gladkost obschego antikanonicheskogo divizora na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 430–441 | MR | Zbl

[6] Iskovskikh V. A., “Mnogoobraziya Fano, I”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 516–562 | MR | Zbl

[7] Iskovskikh V. A., “Mnogoobraziya Fano, II”, Izv. AN SSSR. Ser. matem., 42:3 (1978), 504–549 | MR

[8] Shokurov V. V., “Suschestvovanie pryamoi na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 922–964 | MR | Zbl

[9] Mori S., Mukai S., “Classification of Fano 3-folds with $B_{2}\geq2$”, Manuscr. Mat., 36 (1981), 147–162 | DOI | MR | Zbl

[10] Mori S., Mukai S., “Erratum, Classification of Fano 3-folds with $B_{2}\geq2$”, Manuscr. Mat., 110 (2003), 407 | DOI | MR

[11] Fano G., “Sulle varrieta algebriche a tre dimensionile le cui sezioni iperpiane sono superfici di genere zero e bigenere uno”, Mem. Soc. It. d. Scienze (detta dei XL), 24 (1938), 44–66

[12] Fujita T., “Impossibility criterion of being an ample divisor”, J. of the Math. Soc. of Japan, 34 (1982), 355–363 | DOI | MR | Zbl

[13] Beltrametti M., Sommese A., “A criterion for a variety to be a cone”, Comm. Math. Helv., 62 (1987), 417–422 | DOI | MR | Zbl

[14] Lvovsky S., “Extensions of projective varieties and deformations, I”, Mich. Math. J., 39 (1992), 41–51 | DOI | MR | Zbl

[15] Lvovsky S., “Extensions of projective varieties and deformations, II”, Mich. Math. J., 39 (1992), 65–70 | DOI | MR | Zbl

[16] Cheltsov I. A., “Osobennosti trekhmernykh mnogoobrazii, obladayuschikh obilnym effektivnym divizorom – gladkoi poverkhnostyu kodairovoi razmernosti nul”, Matem. zametki, 59:4 (1996), 618–626 | MR | Zbl

[17] Cheltsov I. A., “Trekhmernye mnogoobraziya, obladayuschie divizorom s chislenno trivialnym kanonicheskim klassom”, UMN, 51:1 (1996), 177–178 | MR | Zbl

[18] Conte A., “On threefolds whose hyperplane sections are Enriques surfaces”, Lect. Note Math., 947, 1981, 221–228

[19] Conte A., Murre J. P., “Algebraic varieties of dimension 3 whose hyperplane sections are Enriques surfaces”, Ann. Souola Norm. Sup. de Pisa, 12 (1985), 43–80 | MR | Zbl

[20] Prokhorov Yu. G., “O trekhmernykh mnogoobraziyakh s giperploskimi secheniyami – poverkhnostyami Enrikvesa”, Matem. sb., 186:9 (1995), 113–124 | MR | Zbl

[21] Alexeev V., “General elephants of ${\mathbb Q}$-Fano 3-folds”, Comp. Math., 91 (1994), 91–116 | MR | Zbl

[22] Fletcher A., “Contributions to Riemann-Roch on projective 3-folds with only canonical singularities and applications”, Proceedings of Symposium in Pure Mathematics, 46 (1987), 221–231 | MR | Zbl

[23] Bayle L., “Classification des variétś complexes projectives de dimension trois dont une section hyperplane generale est une surface d'Enriques”, J. Reine Ang. Math., 449 (1994), 9–63 | MR | Zbl

[24] Sano T., “On classifications of non-Gorenstein ${\mathbb Q}$-Fano 3-folds of Fano index 1”, J. Math. Soc. Japan., 47 (1995), 369–380 | DOI | MR | Zbl

[25] Minagawa T., “Deformations of ${\mathbb Q}$-Calabi-Yau 3-folds and ${\mathbb Q}$-Fano 3-folds of Fano index 1”, J. Math. Soc. Univ. Tokyo, 6 (1999), 397–414 | MR | Zbl

[26] Cheltsov I. A., “Ogranichennost trekhmernykh mnogoobrazii Fano tselogo indeksa”, Matem. zametki, 66:3 (1999), 445–451 | MR | Zbl

[27] Giraldo L., Lopez A., Mũnoz R., “On the existence of Enriques–Fano threefolds of index greater than one”, J. Alg. Geom., 13 (2004), 143–166 | MR | Zbl

[28] Alexeev V., “Theorems about good divisors on log Fano varieties (case of index $r>n-2$)”, Lect. Note Math., 1479, 1991, 1–9 | MR | Zbl

[29] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Advanced Studies in Pure Mathematics, 10, 1987, 383–360 | MR

[30] Hartshorne R., “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl

[31] Fano G., “Osservazioni sopra alcune varietá non razionali aventi tutti i generi nulli”, Atti Accad. Torino, 50 (1915), 1067–1072 | Zbl

[32] Fano G., “Nuove ricerche sulle varietá algebriche a tre dimensioni a curve-sezioni canoniche”, Pont. Acad. Sci. Comment., 11 (1947), 635–720 | MR | Zbl

[33] Segre B., “Variazione continua ad omotopia in geometria algebrica”, Ann. Mat. Pura Appl., 50 (1960), 149–186 | DOI | MR | Zbl

[34] Marchisio M., “Unirational quartic hypersurfaces”, Boll. Unione Mat. Ital., 8 (2000), 301–313 | MR | Zbl

[35] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12, VINITI, M., 1979, 159–236 | MR

[36] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl

[37] Clemens H., Griffiths P., “The intermediate Jacobian of the cubic threefold”, Ann. Math., 95 (1972), 281–356 | DOI | MR | Zbl

[38] Tyurin A. N., “Srednii yakobian trekhmernykh mnogoobrazii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 12, VINITI, M., 1979, 5–57 | MR

[39] Iskovskikh V. A., “O probleme ratsionalnosti dlya trekhmernykh algebraicheskikh mnogoobrazii”, Tr. MIAN, 218, Nauka, M., 1997, 190–232 | MR | Zbl

[40] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Springer, N.Y., 1999 | MR

[41] Botta L. P., Verra A., “The non rationality of the generic Enriques threefold”, Comp. Math., 48 (1983), 167–184 | MR | Zbl

[42] Endryushka S. Yu., “Neratsionalnost obschego mnogoobraziya Enrikvesa”, Matem. sb., 123:2 (1984), 269–275 | MR

[43] Roth L., Algebraic threefolds with special regard to problems of rationality, Springer-Verlag, Berlin, 1955 | MR

[44] Serre J. P., “On the fundamental group of a unirational variety”, J. Lond. Math. Soc., 34 (1959), 481–484 | DOI | MR | Zbl

[45] Tyrrell J. A., “The Enriques threefold”, Proc. Camb. Philos. Soc., 57 (1961), 897–898 | DOI | MR | Zbl

[46] Cheltsov I. A., “On the rationality of non-Gorenstein ${\mathbb Q}$-Fano 3-folds with an integer Fano index”, Cont. Math., 207 (1997), 43–50 | MR | Zbl

[47] Manin Yu. I., “Rational surfaces over perfect fields”, Publ. Math. IHES, 30 (1966), 55–114 | MR

[48] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami, II”, Matem. sb., 72:2 (1967), 161–192 | MR | Zbl

[49] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[50] Iskovskikh V. A., “O biratsionalnykh formakh ratsionalnykh poverkhnostei”, Izv. AN SSSR. Ser. matem., 29:6 (1965), 1417–1433 | MR | Zbl

[51] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh”, Matem. sb., 74:4 (1967), 608–638 | MR | Zbl

[52] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh i s polozhitelnym kvadratom kanonicheskogo klassa”, Matem. sb., 83:1 (1970), 90–119 | MR | Zbl

[53] Iskovskikh V. A., “Biratsionalnye svoistva poverkhnosti stepeni 4 v ${\mathbb P}_{k}^{4}$”, Matem. sb., 88:1 (1972), 31–37 | Zbl

[54] Iskovskikh V. A., “Minimalnye modeli algebraicheskikh poverkhnostei nad sovershennymi polyami”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 19–43 | MR | Zbl

[55] Iskovskikh V. A., “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (1996), 3–72 | MR | Zbl

[56] Gizatulin M., “Ratsionalnye $G$-poverkhnosti”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 110–144 | MR | Zbl

[57] Kollár J., Rational curves on algebraic varieties, Springer-Verlag, Berlin, 1996 | MR