Rationality of an Enriques--Fano threefold of genus five
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 607-618

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the rationality of a non-Gorenstein Fano threefold of Fano index one and degree eight having terminal cyclic quotient singularities and Picard group $\mathbb Z$. This threefold can be described as the quotient of a double covering of $\mathbb P^3$ ramified in a smooth quartic surface by an involution fixing eight different points.
@article{IM2_2004_68_3_a8,
     author = {I. A. Cheltsov},
     title = {Rationality of an {Enriques--Fano} threefold of genus five},
     journal = {Izvestiya. Mathematics },
     pages = {607--618},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Rationality of an Enriques--Fano threefold of genus five
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 607
EP  - 618
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/
LA  - en
ID  - IM2_2004_68_3_a8
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Rationality of an Enriques--Fano threefold of genus five
%J Izvestiya. Mathematics 
%D 2004
%P 607-618
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/
%G en
%F IM2_2004_68_3_a8
I. A. Cheltsov. Rationality of an Enriques--Fano threefold of genus five. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 607-618. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a8/