On the regularity of de~Rham curves
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 567-606

Voir la notice de l'article provenant de la source Math-Net.Ru

De Rham curves are obtained from a polygonal arc by passing to the limit in repeatedly cutting off the corners: at each step, the segments of the arc are divided into three pieces in the ratio $\omega:(1-2\omega):\omega$, where $\omega\in(0,1/2)$ is a given parameter. We find explicitly the sharp exponent of regularity of such a curve for any $\omega$. Regularity is understood in the natural parametrization using the arclength as a parameter. We also obtain a formula for the local regularity of a de Rham curve at each point and describe the sets of points with given local regularity. In particular, we characterize the sets of points with the largest and the smallest local regularity. The average regularity, which is attained almost everywhere in the Lebesgue measure, is computed in terms of the Lyapunov exponent of certain linear operators. We obtain an integral formula for the average regularity and derive upper and lower bounds.
@article{IM2_2004_68_3_a7,
     author = {V. Yu. Protasov},
     title = {On the regularity of {de~Rham} curves},
     journal = {Izvestiya. Mathematics },
     pages = {567--606},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - On the regularity of de~Rham curves
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 567
EP  - 606
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/
LA  - en
ID  - IM2_2004_68_3_a7
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T On the regularity of de~Rham curves
%J Izvestiya. Mathematics 
%D 2004
%P 567-606
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/
%G en
%F IM2_2004_68_3_a7
V. Yu. Protasov. On the regularity of de~Rham curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 567-606. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/