Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2004_68_3_a7, author = {V. Yu. Protasov}, title = {On the regularity of {de~Rham} curves}, journal = {Izvestiya. Mathematics }, pages = {567--606}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/} }
V. Yu. Protasov. On the regularity of de~Rham curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 567-606. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/
[1] De Rham G., “Une peu de mathematique a propos d'une courbe plane”, Revue de Mathematiques Elementaires, II:4, 5 (1947), 678–689
[2] De Rham G., “Sur une courbe plane”, J. Math. Pur. Appl. IX, 35 (1956), 25–42 | MR | Zbl
[3] De Rham G., “Sur les courbes limit de polygones obtenus par trisection”, Enseign. Math. II, 5 (1959), 29–43 | MR | Zbl
[4] Chaikin G. M., “An algorithm for high speed curve generation”, Computer Graphics and Image Processing, 3 (1974), 346–349 | DOI
[5] Cavaretta D., Dahmen W., Micchelli C., “Stationary subdivision”, Mem. Amer. Math. Soc., 93 (1991), 1–186 | MR
[6] Dyn N., Gregory J. A., Levin D., “Analysis of linear binary subdivision schemes for curve design”, Constr. Approx., 7 (1991), 127–147 | DOI | MR | Zbl
[7] Deslauriers G., Dubuc S., “Symmetric iterative interpolation processes”, Constr. Approx., 5 (1989), 49–68 | DOI | MR | Zbl
[8] Daubechies I., Lagarias J., “Two-scale difference equations. I: Global regularity of solutions”, SIAM. J. Math. Anal., 22 (1991), 1388–1410 | DOI | MR | Zbl
[9] Daubechies I., Lagarias J., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl
[10] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:6 (2000), 55–77 | DOI | MR
[11] Farin G. E., Curves and surfaces for computer-aided geometric design, Academic Press, San Diego, 1997 | MR
[12] Brezinski C., Redivo Zaglia M., Extrapolation Methods, Theory and Practice, North-Holland, N.Y., 1991 | MR | Zbl
[13] Aumann G., “Subdivision of linear corner cutting curves”, J. Geom. Graph., 1:2 (1997), 91–103 | MR | Zbl
[14] Mainar E., Pena J. M., “Error analysis of corner cutting algorithms”, Numer. Algorithms, 22:1 (1999), 41–52 | DOI | MR | Zbl
[15] Sidorov N., Vershik A., “Ergodic properties of Erdos measure, the entropy of golden shift, and related problems”, Monatsh. Math., 126 (1998), 215–261 | DOI | MR | Zbl
[16] Nikitin P., “Khausdorfova razmernost garmonicheskoi mery na krivoi de Rama”, Zapiski nauch. sem. POMI, 283, POMI, SPb., 2001, 206–223 | MR | Zbl
[17] Paluszny M., Prautzsch H., Schafer M., “A geometric look at corner cutting”, Comput. Aided Geom. Design, 14:5 (1997), 421–447 | DOI | MR | Zbl
[18] Merrien J. -L., “Prescribing the length of a de Rham curve”, Math. Eng. Ind., 7:2 (1998), 129–138 | MR | Zbl
[19] Dubuc S., Merrien J. -L., Sablonniere P., “The length of the de Rham curve”, J. Math. Anal. Appl., 223:1 (1998), 182–195 | DOI | MR | Zbl
[20] Gregory J. A., Qu R., “Nonuniform corner cutting”, Comput. Aided Geom. Design, 13:8 (1996), 763–772 | DOI | MR | Zbl
[21] Noakes L., “Nonlinear corner cutting”, Adv. Comput. Math., 8:3 (1998), 165–177 | DOI | MR | Zbl
[22] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[23] Barnsley M., Fractals everywhere, Academic press, Boston, 1988 | MR | Zbl
[24] Micchelli C. A., Prautzsch H., “Uniform refinement of curves”, Linear Alg. Appl., 114/115 (1989), 841–870 | DOI | MR | Zbl
[25] Collela D., Heil C., “Characterization of scaling functions. I: Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR
[26] Rioul O., “Simple regularity criteria for subdivision schemes”, SIAM J. Math. Anal., 23 (1992), 1544–1576 | DOI | MR | Zbl
[27] Han B., “Analysis and construction of optimal multivariate biorthogonal wavelets with compact support”, SIAM J. Math. Anal., 31 (1999), 274–304 | DOI | MR
[28] Villemoes L., “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25 (1994), 1433–1460 | DOI | MR | Zbl
[29] Vetterly M., Herley C., “Wavelets and filter banks. Theory and Design”, IEEE Trans. on signal Proc., 40:9 (1992), 2207–2232 | DOI
[30] Protasov V. Yu., “Asimptotika funktsii razbieniya”, Matem. sb., 191:3 (2000), 65–98 | MR | Zbl
[31] Berger M. A., Wang Y., “Bounded semi-groups of matrices”, Linear Alg. Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[32] Blondel V., Tsitsiklis J. M., “Approximating the spectral radius of sets of matrices in the $\max$-algebra is NP-hard”, IEEE Trans. Autom. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl
[33] Blondel V., Tsitsiklis J. M., “The boundedness of all products of a pair of matrices is undecidable”, Syst. Control Lett., 41:2 (2000), 135–140 | DOI | MR | Zbl
[34] Blondel V., Theys J., Vladimirov A. A., An elementary counterexample to the finiteness conjecture, Preprint , 2001 www.inma.ucl.ac.be/~blondel | MR
[35] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundam. i prikl. matematika, 2:1 (1996), 205–231 | MR | Zbl
[36] Gripenberg G., “Computing the joint spectral radius”, Lin. Alg. Appl., 234 (1996), 43–60 | DOI | MR | Zbl
[37] Rota G. C., Strang G., “A note on the joint spectral radius”, Kon. Nederl. Acad. Wet. Proc., 63 (1960), 379–381 | MR | Zbl
[38] Gvishiani A. D., Kirillov A. A., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1988 | MR
[39] Oseledets V. I., “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | Zbl
[40] Ma J., Chen Y., Liu Z., “The matrix algorithm of Lyapunov exponent for the experimental data obtained in dynamic analysis”, Appl. Math. Mech., 20:9 (1999), 985–993 | DOI | MR | Zbl
[41] Ravishankar K., “Power law scaling of the top Lyapunov exponent of a product of random matrices”, J. Stat. Phys., 54:1/2 (1989), 531–537 | DOI | MR | Zbl
[42] Kaganova E. M., “The Lyapunov index for the product of random operators”, Vestn. Mosk. Univ. Ser. I, 1988, no. 2, 10–14 | MR
[43] Lau K. S., Wang J., “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM J. Math. Anal., 26 (1995), 1018–1046 | DOI | MR | Zbl
[44] Protasov V. Yu., “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl
[45] Zhow D. X., “The $p$-norm joint spectral radius and its applications in wavelet analysis”, Intern. conference in wavelet analysis and its applications, AMS/IP Studies in Advanced Mathematics, 25, 2002, 305–326 | MR