On the regularity of de~Rham curves
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 567-606.

Voir la notice de l'article provenant de la source Math-Net.Ru

De Rham curves are obtained from a polygonal arc by passing to the limit in repeatedly cutting off the corners: at each step, the segments of the arc are divided into three pieces in the ratio $\omega:(1-2\omega):\omega$, where $\omega\in(0,1/2)$ is a given parameter. We find explicitly the sharp exponent of regularity of such a curve for any $\omega$. Regularity is understood in the natural parametrization using the arclength as a parameter. We also obtain a formula for the local regularity of a de Rham curve at each point and describe the sets of points with given local regularity. In particular, we characterize the sets of points with the largest and the smallest local regularity. The average regularity, which is attained almost everywhere in the Lebesgue measure, is computed in terms of the Lyapunov exponent of certain linear operators. We obtain an integral formula for the average regularity and derive upper and lower bounds.
@article{IM2_2004_68_3_a7,
     author = {V. Yu. Protasov},
     title = {On the regularity of {de~Rham} curves},
     journal = {Izvestiya. Mathematics },
     pages = {567--606},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - On the regularity of de~Rham curves
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 567
EP  - 606
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/
LA  - en
ID  - IM2_2004_68_3_a7
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T On the regularity of de~Rham curves
%J Izvestiya. Mathematics 
%D 2004
%P 567-606
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/
%G en
%F IM2_2004_68_3_a7
V. Yu. Protasov. On the regularity of de~Rham curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 567-606. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a7/

[1] De Rham G., “Une peu de mathematique a propos d'une courbe plane”, Revue de Mathematiques Elementaires, II:4, 5 (1947), 678–689

[2] De Rham G., “Sur une courbe plane”, J. Math. Pur. Appl. IX, 35 (1956), 25–42 | MR | Zbl

[3] De Rham G., “Sur les courbes limit de polygones obtenus par trisection”, Enseign. Math. II, 5 (1959), 29–43 | MR | Zbl

[4] Chaikin G. M., “An algorithm for high speed curve generation”, Computer Graphics and Image Processing, 3 (1974), 346–349 | DOI

[5] Cavaretta D., Dahmen W., Micchelli C., “Stationary subdivision”, Mem. Amer. Math. Soc., 93 (1991), 1–186 | MR

[6] Dyn N., Gregory J. A., Levin D., “Analysis of linear binary subdivision schemes for curve design”, Constr. Approx., 7 (1991), 127–147 | DOI | MR | Zbl

[7] Deslauriers G., Dubuc S., “Symmetric iterative interpolation processes”, Constr. Approx., 5 (1989), 49–68 | DOI | MR | Zbl

[8] Daubechies I., Lagarias J., “Two-scale difference equations. I: Global regularity of solutions”, SIAM. J. Math. Anal., 22 (1991), 1388–1410 | DOI | MR | Zbl

[9] Daubechies I., Lagarias J., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM. J. Math. Anal., 23 (1992), 1031–1079 | DOI | MR | Zbl

[10] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:6 (2000), 55–77 | DOI | MR

[11] Farin G. E., Curves and surfaces for computer-aided geometric design, Academic Press, San Diego, 1997 | MR

[12] Brezinski C., Redivo Zaglia M., Extrapolation Methods, Theory and Practice, North-Holland, N.Y., 1991 | MR | Zbl

[13] Aumann G., “Subdivision of linear corner cutting curves”, J. Geom. Graph., 1:2 (1997), 91–103 | MR | Zbl

[14] Mainar E., Pena J. M., “Error analysis of corner cutting algorithms”, Numer. Algorithms, 22:1 (1999), 41–52 | DOI | MR | Zbl

[15] Sidorov N., Vershik A., “Ergodic properties of Erdos measure, the entropy of golden shift, and related problems”, Monatsh. Math., 126 (1998), 215–261 | DOI | MR | Zbl

[16] Nikitin P., “Khausdorfova razmernost garmonicheskoi mery na krivoi de Rama”, Zapiski nauch. sem. POMI, 283, POMI, SPb., 2001, 206–223 | MR | Zbl

[17] Paluszny M., Prautzsch H., Schafer M., “A geometric look at corner cutting”, Comput. Aided Geom. Design, 14:5 (1997), 421–447 | DOI | MR | Zbl

[18] Merrien J. -L., “Prescribing the length of a de Rham curve”, Math. Eng. Ind., 7:2 (1998), 129–138 | MR | Zbl

[19] Dubuc S., Merrien J. -L., Sablonniere P., “The length of the de Rham curve”, J. Math. Anal. Appl., 223:1 (1998), 182–195 | DOI | MR | Zbl

[20] Gregory J. A., Qu R., “Nonuniform corner cutting”, Comput. Aided Geom. Design, 13:8 (1996), 763–772 | DOI | MR | Zbl

[21] Noakes L., “Nonlinear corner cutting”, Adv. Comput. Math., 8:3 (1998), 165–177 | DOI | MR | Zbl

[22] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[23] Barnsley M., Fractals everywhere, Academic press, Boston, 1988 | MR | Zbl

[24] Micchelli C. A., Prautzsch H., “Uniform refinement of curves”, Linear Alg. Appl., 114/115 (1989), 841–870 | DOI | MR | Zbl

[25] Collela D., Heil C., “Characterization of scaling functions. I: Continuous solutions”, SIAM J. Matrix Anal. Appl., 15 (1994), 496–518 | DOI | MR

[26] Rioul O., “Simple regularity criteria for subdivision schemes”, SIAM J. Math. Anal., 23 (1992), 1544–1576 | DOI | MR | Zbl

[27] Han B., “Analysis and construction of optimal multivariate biorthogonal wavelets with compact support”, SIAM J. Math. Anal., 31 (1999), 274–304 | DOI | MR

[28] Villemoes L., “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25 (1994), 1433–1460 | DOI | MR | Zbl

[29] Vetterly M., Herley C., “Wavelets and filter banks. Theory and Design”, IEEE Trans. on signal Proc., 40:9 (1992), 2207–2232 | DOI

[30] Protasov V. Yu., “Asimptotika funktsii razbieniya”, Matem. sb., 191:3 (2000), 65–98 | MR | Zbl

[31] Berger M. A., Wang Y., “Bounded semi-groups of matrices”, Linear Alg. Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[32] Blondel V., Tsitsiklis J. M., “Approximating the spectral radius of sets of matrices in the $\max$-algebra is NP-hard”, IEEE Trans. Autom. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl

[33] Blondel V., Tsitsiklis J. M., “The boundedness of all products of a pair of matrices is undecidable”, Syst. Control Lett., 41:2 (2000), 135–140 | DOI | MR | Zbl

[34] Blondel V., Theys J., Vladimirov A. A., An elementary counterexample to the finiteness conjecture, Preprint , 2001 www.inma.ucl.ac.be/~blondel | MR

[35] Protasov V. Yu., “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundam. i prikl. matematika, 2:1 (1996), 205–231 | MR | Zbl

[36] Gripenberg G., “Computing the joint spectral radius”, Lin. Alg. Appl., 234 (1996), 43–60 | DOI | MR | Zbl

[37] Rota G. C., Strang G., “A note on the joint spectral radius”, Kon. Nederl. Acad. Wet. Proc., 63 (1960), 379–381 | MR | Zbl

[38] Gvishiani A. D., Kirillov A. A., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1988 | MR

[39] Oseledets V. I., “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | Zbl

[40] Ma J., Chen Y., Liu Z., “The matrix algorithm of Lyapunov exponent for the experimental data obtained in dynamic analysis”, Appl. Math. Mech., 20:9 (1999), 985–993 | DOI | MR | Zbl

[41] Ravishankar K., “Power law scaling of the top Lyapunov exponent of a product of random matrices”, J. Stat. Phys., 54:1/2 (1989), 531–537 | DOI | MR | Zbl

[42] Kaganova E. M., “The Lyapunov index for the product of random operators”, Vestn. Mosk. Univ. Ser. I, 1988, no. 2, 10–14 | MR

[43] Lau K. S., Wang J., “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM J. Math. Anal., 26 (1995), 1018–1046 | DOI | MR | Zbl

[44] Protasov V. Yu., “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl

[45] Zhow D. X., “The $p$-norm joint spectral radius and its applications in wavelet analysis”, Intern. conference in wavelet analysis and its applications, AMS/IP Studies in Advanced Mathematics, 25, 2002, 305–326 | MR