Regular homotopy of Hurwitz curves
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 521-542

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any two irreducible cuspidal Hurwitz curves $C_0$ and $C_1$ (or, more generally, two curves with $A$-type singularities) in the Hirzebruch surface $\boldsymbol F_N$ with the same homology classes and sets of singularities are regular homotopic. Moreover, they are symplectically regular homotopic if $C_0$ and $C_1$ are symplectic with respect to a compatible symplectic form.
@article{IM2_2004_68_3_a5,
     author = {Vik. S. Kulikov and D. Auroux and V. V. Shevchishin},
     title = {Regular homotopy of {Hurwitz} curves},
     journal = {Izvestiya. Mathematics },
     pages = {521--542},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - D. Auroux
AU  - V. V. Shevchishin
TI  - Regular homotopy of Hurwitz curves
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 521
EP  - 542
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/
LA  - en
ID  - IM2_2004_68_3_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A D. Auroux
%A V. V. Shevchishin
%T Regular homotopy of Hurwitz curves
%J Izvestiya. Mathematics 
%D 2004
%P 521-542
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/
%G en
%F IM2_2004_68_3_a5
Vik. S. Kulikov; D. Auroux; V. V. Shevchishin. Regular homotopy of Hurwitz curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 521-542. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/