Regular homotopy of Hurwitz curves
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 521-542
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that any two irreducible cuspidal Hurwitz curves $C_0$ and $C_1$ (or, more generally, two curves with $A$-type singularities) in the Hirzebruch surface $\boldsymbol F_N$ with the same homology classes and sets of singularities are regular homotopic. Moreover, they are symplectically regular homotopic if $C_0$ and $C_1$ are symplectic with respect to a compatible symplectic form.
@article{IM2_2004_68_3_a5,
author = {Vik. S. Kulikov and D. Auroux and V. V. Shevchishin},
title = {Regular homotopy of {Hurwitz} curves},
journal = {Izvestiya. Mathematics },
pages = {521--542},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/}
}
Vik. S. Kulikov; D. Auroux; V. V. Shevchishin. Regular homotopy of Hurwitz curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 521-542. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a5/