On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 447-459
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and (or) sufficient conditions on a closed set $F\subset\mathbb{C}$ are given for any function $f$, continuous on $F$ and $n$-analytic on $F^0$, to be the uniform limit on $F$ of a sequence of $n$-analytic entire or $n$-analytic meromorphic functions.
@article{IM2_2004_68_3_a2,
author = {A. Boivin and P. M. Gauthier and P. V. Paramonov},
title = {On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$},
journal = {Izvestiya. Mathematics },
pages = {447--459},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/}
}
TY - JOUR AU - A. Boivin AU - P. M. Gauthier AU - P. V. Paramonov TI - On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$ JO - Izvestiya. Mathematics PY - 2004 SP - 447 EP - 459 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/ LA - en ID - IM2_2004_68_3_a2 ER -
A. Boivin; P. M. Gauthier; P. V. Paramonov. On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 447-459. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/