On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 447-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and (or) sufficient conditions on a closed set $F\subset\mathbb{C}$ are given for any function $f$, continuous on $F$ and $n$-analytic on $F^0$, to be the uniform limit on $F$ of a sequence of $n$-analytic entire or $n$-analytic meromorphic functions.
@article{IM2_2004_68_3_a2,
     author = {A. Boivin and P. M. Gauthier and P. V. Paramonov},
     title = {On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$},
     journal = {Izvestiya. Mathematics },
     pages = {447--459},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/}
}
TY  - JOUR
AU  - A. Boivin
AU  - P. M. Gauthier
AU  - P. V. Paramonov
TI  - On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 447
EP  - 459
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/
LA  - en
ID  - IM2_2004_68_3_a2
ER  - 
%0 Journal Article
%A A. Boivin
%A P. M. Gauthier
%A P. V. Paramonov
%T On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$
%J Izvestiya. Mathematics 
%D 2004
%P 447-459
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/
%G en
%F IM2_2004_68_3_a2
A. Boivin; P. M. Gauthier; P. V. Paramonov. On uniform approximation by $n$-analytic functions on closed sets in~$\mathbb C$. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 447-459. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a2/

[1] Karmona Kh. Kh., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Matem. sb., 193:10 (2002), 75–98 | MR

[2] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950

[3] Kusis P., Vvedenie v teoriyu prostranstv $H_p$, Mir, M., 1984 | MR

[4] Gauthier P. M., Hengartner W., “Local harmonic majorants of functions subharmonic in the unit disc”, J. Anal. Math., 26 (1973), 405–412 | DOI | MR | Zbl

[5] Shapiro H. S., The Schwarz Function and its Generalization to Higher Dimensions, Univ. of Arkansas, Wiley – N.Y., 1992 | MR

[6] Arakelyan N. U., “Ravnomernaya approksimatsiya na zamknutykh mnozhestvakh tselymi funktsiyami”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1187–1206 | MR | Zbl

[7] Nersesyan A. A., “Ravnomernaya i kasatelnaya approksimatsiya meromorfnymi funktsiyami”, Izv. AN ArmSSR. Ser. matem., 7 (1972), 405–412 | MR

[8] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl

[9] Gardiner S. J., Harmonic Approximation, LMS. Lecture Notes Series, 221, Cambridge Univ. Press, Cambridge, 1995 | MR

[10] Gamelin T. V., Ravnomernye algebry, Mir, M., 1973 | Zbl

[11] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[12] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl

[13] Carmona J. J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl

[14] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963, 87–100

[15] Boivin A., Gauthier P. M., Paramonov P. V., “Approximation on closed sets by analytic or meromorphic solutions of elliptic equations and applications”, Canad. J. Math., 54:5 (2002), 945–969 | MR | Zbl