On the number of rational points on certain elliptic curves
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 437-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an elliptic curve defined over the rationals, with rational 2-torsion. We prove a uniform bound for the number of rational points on $E$ of height $\leqslant B$ of the form $\#\{P\in E({\mathbb Q})\colon H(P)\leqslant B\}\leqslant c(\varepsilon)(\max(H(E),B))^\varepsilon$, valid for every fixed $\varepsilon>0$ and a suitable positive computable constant $c(\varepsilon)$. We give an application of this result to the counting of quadruples $(p_1,p_2,p_3,p_4)$ of distinct primes that do not exceed $X$ and satisfy $p_i^2\Delta_{jk}-p_j^2\Delta_{ik}+p_k^2\Delta_{ij}=0$ for all $1\leqslant i$, where $\Delta_{ij}$ are given integers. This is applied by Konyagin (in the paper [3], which is published simultaneously with the present one) to a problem on the large sieve by squares.
@article{IM2_2004_68_3_a1,
     author = {E. Bombieri and U. Zannier},
     title = {On the number of rational points on certain elliptic curves},
     journal = {Izvestiya. Mathematics },
     pages = {437--445},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a1/}
}
TY  - JOUR
AU  - E. Bombieri
AU  - U. Zannier
TI  - On the number of rational points on certain elliptic curves
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 437
EP  - 445
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a1/
LA  - en
ID  - IM2_2004_68_3_a1
ER  - 
%0 Journal Article
%A E. Bombieri
%A U. Zannier
%T On the number of rational points on certain elliptic curves
%J Izvestiya. Mathematics 
%D 2004
%P 437-445
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a1/
%G en
%F IM2_2004_68_3_a1
E. Bombieri; U. Zannier. On the number of rational points on certain elliptic curves. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 437-445. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a1/

[1] David S., “Points de petite hauteur sur les courbes elliptiques”, J. Number Theory, 64 (1997), 104–129 | DOI | MR | Zbl

[2] Hindry M., Silverman J. H., “The canonical height and integral points on elliptic curves”, Invent. Math., 93 (1988), 419–450 | DOI | MR | Zbl

[3] Konyagin S. V., “Zadachi o mnozhestve chisel, svobodnykh ot kvadratov”, Izv. RAN. Ser. matem., 68:3 (2004), 63–90 | MR

[4] Masser D., “Counting points of small height on elliptic curves”, Bull. Soc. Math. France, 117 (1989), 247–265 | MR | Zbl

[5] Narkiewicz W., Elementary and analytic theory of algebraic numbers, PWN – Polish Publishers ; II${}^{\text{nd}}$, Springer-Verlag, N. Y., 1990 | MR | Zbl

[6] Silverman J. H., The Arithmetic of Elliptic Curves, GTM, 106, Springer-Verlag, N. Y., 1986 | MR | Zbl

[7] Zimmer H. G., “On the difference of the Weil height and the Néron–Tate height”, Math. Z., 147 (1976), 35–51 | DOI | MR | Zbl