Partial words and the interaction property of periods
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 405-428
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem of Fine and Wilf expresses the interaction property of periods, which is a basic property of periodic words. An arbitrary word with given periods $p$ and $q$ also has a “derived” period $\operatorname{gcd}(p,q)$ if the length of the word is greater than some critical value called the length of interaction. In this paper we consider a similar property for arbitrary periodic partial words and give a sharp linear bound for the length of interaction.
@article{IM2_2004_68_2_a8,
author = {A. M. Shur and Yu. V. Gamzova},
title = {Partial words and the interaction property of periods},
journal = {Izvestiya. Mathematics },
pages = {405--428},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/}
}
A. M. Shur; Yu. V. Gamzova. Partial words and the interaction property of periods. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 405-428. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/