Partial words and the interaction property of periods
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 405-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem of Fine and Wilf expresses the interaction property of periods, which is a basic property of periodic words. An arbitrary word with given periods $p$ and $q$ also has a “derived” period $\operatorname{gcd}(p,q)$ if the length of the word is greater than some critical value called the length of interaction. In this paper we consider a similar property for arbitrary periodic partial words and give a sharp linear bound for the length of interaction.
@article{IM2_2004_68_2_a8,
     author = {A. M. Shur and Yu. V. Gamzova},
     title = {Partial words and the interaction property of periods},
     journal = {Izvestiya. Mathematics },
     pages = {405--428},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/}
}
TY  - JOUR
AU  - A. M. Shur
AU  - Yu. V. Gamzova
TI  - Partial words and the interaction property of periods
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 405
EP  - 428
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/
LA  - en
ID  - IM2_2004_68_2_a8
ER  - 
%0 Journal Article
%A A. M. Shur
%A Yu. V. Gamzova
%T Partial words and the interaction property of periods
%J Izvestiya. Mathematics 
%D 2004
%P 405-428
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/
%G en
%F IM2_2004_68_2_a8
A. M. Shur; Yu. V. Gamzova. Partial words and the interaction property of periods. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 405-428. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a8/

[1] Berstel J., Boasson L., “Partial words and a theorem of Fine and Wilf”, Theor. Comp. Sci., 218 (1999), 135–141 | DOI | MR | Zbl

[2] Fine N. J., Wilf H. S., “Uniqueness theorem for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | DOI | MR | Zbl

[3] Choffrut C., Karhumäki J., “Combinatorics on words”, Handbook of formal languages, V. 1. Ch. 6, Springer, Berlin, 1997, 329–438 | MR

[4] Shur A. M., Konovalova Yu. V., “On the periods of partial words”, Lect. Notes Comp. Sci., 2136 (2001), 657–665 | DOI | MR | Zbl

[5] Blanchet-Sadri F., Hegstrom R. A., “Partial words and a theorem of Fine and Wilf revisited”, Theor. Comp. Sci., 270 (2002), 401–419 | DOI | MR | Zbl

[6] Colosimo A., De Luca A., “Special factors in biological strings”, J. Theor. Biol., 204 (2000), 29–46 | DOI

[7] Head T., Pǎun G., Pixton D., “Language Theory and Molecular Genetics”, Handbook of formal languages, V. 2. Ch. 7, Springer, Berlin, 1997, 295–360 | MR