The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 375-404

Voir la notice de l'article provenant de la source Math-Net.Ru

Multiple points of the spectrum in the reduction $D_n\downarrow D_{n-1}$ are separated by introducing a non-semisimple intermediate subalgebra and a weight scheme different from the Gel'fand–Tsetlin scheme. We suggest a method of constructing a weight basis in the space of a finite-dimensional irreducible representation of $D_n$. The elements of this basis are labelled by such weight schemes. We also study the category of finite-dimensional highest-weight representations of this intermediate Lie algebra.
@article{IM2_2004_68_2_a7,
     author = {V. V. Shtepin},
     title = {The intermediate {Lie} algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight},
     journal = {Izvestiya. Mathematics },
     pages = {375--404},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 375
EP  - 404
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/
LA  - en
ID  - IM2_2004_68_2_a7
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
%J Izvestiya. Mathematics 
%D 2004
%P 375-404
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/
%G en
%F IM2_2004_68_2_a7
V. V. Shtepin. The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 375-404. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/