The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 375-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multiple points of the spectrum in the reduction $D_n\downarrow D_{n-1}$ are separated by introducing a non-semisimple intermediate subalgebra and a weight scheme different from the Gel'fand–Tsetlin scheme. We suggest a method of constructing a weight basis in the space of a finite-dimensional irreducible representation of $D_n$. The elements of this basis are labelled by such weight schemes. We also study the category of finite-dimensional highest-weight representations of this intermediate Lie algebra.
@article{IM2_2004_68_2_a7,
     author = {V. V. Shtepin},
     title = {The intermediate {Lie} algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight},
     journal = {Izvestiya. Mathematics },
     pages = {375--404},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 375
EP  - 404
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/
LA  - en
ID  - IM2_2004_68_2_a7
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight
%J Izvestiya. Mathematics 
%D 2004
%P 375-404
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/
%G en
%F IM2_2004_68_2_a7
V. V. Shtepin. The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 375-404. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a7/

[1] Shtepin V. V., “Promezhutochnye algebry Li i ikh konechnomernye predstavleniya”, Izv. RAN. Ser. matem., 57:6 (1993), 176–198 | Zbl

[2] Shtepin V. V., “Promezhutochnaya ortogonalnaya algebra Li $\frak b_{n-1/2}$ i ee konechnomernye predstavleniya”, Izv. RAN. Ser. matem., 62:3 (1998), 201–223 | MR | Zbl

[3] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[4] Gelfand I. M., Tsetlin M. L., “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, DAN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[5] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–119 | MR

[6] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[7] Bincer A. M., “Bases in $\text{Sp}(2n)$ representation space”, Lect. Notes in Phys., 135, 1980, 459–463 | MR

[8] Shtepin V. V., “Razdelenie kratnykh tochek spektra v reduktsii $\mathrm{sp}(2n)\downarrow\mathrm{sp}(2n-2)$”, Funkts. analiz i ego prilozh., 20:4 (1986), 93–95 | MR | Zbl

[9] Serr Zh. P., Gruppy i algebry Li, Mir, M., 1969 | MR | Zbl

[10] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR