@article{IM2_2004_68_2_a1,
author = {A. A. Arkhipova},
title = {A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity},
journal = {Izvestiya. Mathematics},
pages = {243--258},
year = {2004},
volume = {68},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/}
}
TY - JOUR AU - A. A. Arkhipova TI - A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity JO - Izvestiya. Mathematics PY - 2004 SP - 243 EP - 258 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/ LA - en ID - IM2_2004_68_2_a1 ER -
A. A. Arkhipova. A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity. Izvestiya. Mathematics, Tome 68 (2004) no. 2, pp. 243-258. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/
[1] Frehse J., “On two-dimensional quasi-linear elliptic systems”, Manuscripta Math., 28 (1979), 21–50 | DOI | MR
[2] Arkhipova A. A., “Problema razreshimosti dlya nediagonalnykh ellipticheskikh sistem s kvadratichnoi nelineinostyu po gradientu (dvumernykh sluchai)”, Zapiski nauch. sem. POMI, 295, POMI, SPb., 2003, 5–17 | MR | Zbl
[3] Giaquinta M., Giusti E., “Non linear elliptic systems with quadratic growth”, Manuscripta Math., 24 (1978), 323–349 | DOI | MR | Zbl
[4] Hamburger C., “A new partial regularity proof for solutions of nonlinear elliptic systems”, Manuscripta Math., 95:1 (1998), 11–31 | DOI | MR | Zbl
[5] Arkhipova A. A., “O regulyarnosti reshenii kraevykh zadach dlya kvazilineinykh ellipticheskikh sistem s kvadratichnoi nelineinostyu”, Problemy matematicheskogo analiza, Sb., no. 15, Izd-vo S.-Peterburgskogo universiteta, S.-Pb., 1995, 47–69
[6] Arkhipova A. A., “Quasireverse Holder inequalities and a priori estimates for quasilinear elliptic systems”, Rendic. Mat. Acc. Lincei, 14 (2003), 9 | MR
[7] Kufner A., John O., Fučik S., Functional Spaces, Academia Prague, Prague, 1977 | Zbl
[8] Troiniello G. M., Elliptic Differential Equations and Obstacle Problems, Plenum Press, N. Y., 1987 | MR
[9] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 17:3 (1961), 415–426 | DOI | MR
[10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983 | MR | Zbl