A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 243-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quasilinear elliptic non-diagonal systems of equations with strong non-linearity with respect to the gradient. We have already shown that the generalized solution of this problem is Hölder continuous in the neighbourhood of points of the domain at which the norm of the gradient of the solution is sufficiently small in the Morrey space $L^{2,n-2}$. We estimate the Hölder norm of the solution in the neighbourhood of such points in terms of its norm in the Sobolev space $W_2^1$. We obtain a similar result under the Dirichlet boundary condition for points situated in the neighbourhood of the boundary.
@article{IM2_2004_68_2_a1,
     author = {A. A. Arkhipova},
     title = {A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity},
     journal = {Izvestiya. Mathematics },
     pages = {243--258},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 243
EP  - 258
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/
LA  - en
ID  - IM2_2004_68_2_a1
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity
%J Izvestiya. Mathematics 
%D 2004
%P 243-258
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/
%G en
%F IM2_2004_68_2_a1
A. A. Arkhipova. A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 243-258. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a1/

[1] Frehse J., “On two-dimensional quasi-linear elliptic systems”, Manuscripta Math., 28 (1979), 21–50 | DOI | MR

[2] Arkhipova A. A., “Problema razreshimosti dlya nediagonalnykh ellipticheskikh sistem s kvadratichnoi nelineinostyu po gradientu (dvumernykh sluchai)”, Zapiski nauch. sem. POMI, 295, POMI, SPb., 2003, 5–17 | MR | Zbl

[3] Giaquinta M., Giusti E., “Non linear elliptic systems with quadratic growth”, Manuscripta Math., 24 (1978), 323–349 | DOI | MR | Zbl

[4] Hamburger C., “A new partial regularity proof for solutions of nonlinear elliptic systems”, Manuscripta Math., 95:1 (1998), 11–31 | DOI | MR | Zbl

[5] Arkhipova A. A., “O regulyarnosti reshenii kraevykh zadach dlya kvazilineinykh ellipticheskikh sistem s kvadratichnoi nelineinostyu”, Problemy matematicheskogo analiza, Sb., no. 15, Izd-vo S.-Peterburgskogo universiteta, S.-Pb., 1995, 47–69

[6] Arkhipova A. A., “Quasireverse Holder inequalities and a priori estimates for quasilinear elliptic systems”, Rendic. Mat. Acc. Lincei, 14 (2003), 9 | MR

[7] Kufner A., John O., Fučik S., Functional Spaces, Academia Prague, Prague, 1977 | Zbl

[8] Troiniello G. M., Elliptic Differential Equations and Obstacle Problems, Plenum Press, N. Y., 1987 | MR

[9] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 17:3 (1961), 415–426 | DOI | MR

[10] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983 | MR | Zbl