Almost everywhere convergence over cubes of multiple trigonometric Fourier series
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 223-241

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain conditions on a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ we prove a theorem asserting that the convergence almost everywhere of trigonometric Fourier series for all functions of class $\varphi(L)_{[-\pi,\pi)}$ implies the convergence over cubes of the multiple Fourier series and all its conjugates for an arbitrary function $f\in\varphi(L)(\log^+L)^{d-1}_{[-\pi,\pi)^d}$, $d\in\mathbb N$. It follows from this and an earlier result of the author on the convergence almost everywhere of Fourier series of functions of one variable and class $L(\log^+L)(\log^+\log^+\log^+L)_{[-\pi,\pi)}$ that if $f\in L(\log^+L)^d(\log^+\log^+\log^+L)_{[-\pi,\pi)^d}$, $d\in\mathbb N$, then the Fourier series of $f$ and all its conjugates converge over cubes almost everywhere.
@article{IM2_2004_68_2_a0,
     author = {N. Yu. Antonov},
     title = {Almost everywhere convergence over cubes of multiple trigonometric {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {223--241},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Almost everywhere convergence over cubes of multiple trigonometric Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 223
EP  - 241
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/
LA  - en
ID  - IM2_2004_68_2_a0
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Almost everywhere convergence over cubes of multiple trigonometric Fourier series
%J Izvestiya. Mathematics 
%D 2004
%P 223-241
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/
%G en
%F IM2_2004_68_2_a0
N. Yu. Antonov. Almost everywhere convergence over cubes of multiple trigonometric Fourier series. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 223-241. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/