Almost everywhere convergence over cubes of multiple trigonometric Fourier series
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 223-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain conditions on a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ we prove a theorem asserting that the convergence almost everywhere of trigonometric Fourier series for all functions of class $\varphi(L)_{[-\pi,\pi)}$ implies the convergence over cubes of the multiple Fourier series and all its conjugates for an arbitrary function $f\in\varphi(L)(\log^+L)^{d-1}_{[-\pi,\pi)^d}$, $d\in\mathbb N$. It follows from this and an earlier result of the author on the convergence almost everywhere of Fourier series of functions of one variable and class $L(\log^+L)(\log^+\log^+\log^+L)_{[-\pi,\pi)}$ that if $f\in L(\log^+L)^d(\log^+\log^+\log^+L)_{[-\pi,\pi)^d}$, $d\in\mathbb N$, then the Fourier series of $f$ and all its conjugates converge over cubes almost everywhere.
@article{IM2_2004_68_2_a0,
     author = {N. Yu. Antonov},
     title = {Almost everywhere convergence over cubes of multiple trigonometric {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {223--241},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Almost everywhere convergence over cubes of multiple trigonometric Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 223
EP  - 241
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/
LA  - en
ID  - IM2_2004_68_2_a0
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Almost everywhere convergence over cubes of multiple trigonometric Fourier series
%J Izvestiya. Mathematics 
%D 2004
%P 223-241
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/
%G en
%F IM2_2004_68_2_a0
N. Yu. Antonov. Almost everywhere convergence over cubes of multiple trigonometric Fourier series. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 223-241. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a0/

[1] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[2] Hunt R. A., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues, SIU Press, Carbondale–Illinois, 1968, 235–255 | MR

[3] Sjölin P., “An inequality of Paley and convergence a. e. of Walsh–Fourier series”, Arkiv för mat., 7 (1969), 551–570 | DOI | MR | Zbl

[4] Antonov N. Yu., “Convergence of Fourier series”, East J. on Approx., 2:2 (1996), 187–196 | MR | Zbl

[5] Konyagin S. V., “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Matem. sb., 191:1 (2000), 103–126 | MR | Zbl

[6] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GSSR, 58:2 (1970), 277–279 | MR | Zbl

[7] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl

[8] Sjölin P., “Convergence almost everywhere of sertain singular integrals and multiple Fourier series”, Arkiv för mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[9] Konyagin S. V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math. (Szeged), 61 (1995), 305–329 | MR | Zbl

[10] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi (L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[11] Stein E. M., “On limits of sequences of operators”, Annals of Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[12] Kolmogoroff A., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | Zbl

[13] Zhizhiashvili L. V., “O spravedlivosti teoremy A. N. Kolmogorova dlya sopryazhennykh funktsii mnogikh peremennykh”, Matem. zametki, 32:1 (1982), 13–21 | MR | Zbl

[14] Zigmund A., Trigonometricheskie ryady, 2, Mir, M., 1965 | MR

[15] Antonov N. Yu., Skhodimost pochti vsyudu kratnykh ryadov Fure, Dep. v VINITI 24.11.97, No 3444-B97 | Zbl