Prime alternative algebras that are nearly commutative
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 181-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that by deforming the multiplication in a prime commutative alternative algebra using a C-operation we obtain a prime non-commutative alternative algebra. Under certain restrictions on non-commutative algebras this relation between algebras is reversible. Isotopes are special cases of deformations. We introduce and study a linear space generated by the Bruck C-operations. We prove that the Bruck space is generated by operations of rank 1 and 2 and that “general” Bruck operations of rank 2 are independent in the following sense: a sum of $n$ operations of rank 2 cannot be written as a linear combination of $(n-1)$ operations of rank 2 and an arbitrary operation of rank 1. We describe infinite series of non-isomorphic prime non-commutative algebras of bounded degree that are deformations of a concrete prime commutative algebra.
@article{IM2_2004_68_1_a6,
     author = {S. V. Pchelintsev},
     title = {Prime alternative algebras that are nearly commutative},
     journal = {Izvestiya. Mathematics },
     pages = {181--204},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a6/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Prime alternative algebras that are nearly commutative
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 181
EP  - 204
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a6/
LA  - en
ID  - IM2_2004_68_1_a6
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Prime alternative algebras that are nearly commutative
%J Izvestiya. Mathematics 
%D 2004
%P 181-204
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a6/
%G en
%F IM2_2004_68_1_a6
S. V. Pchelintsev. Prime alternative algebras that are nearly commutative. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 181-204. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a6/

[1] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[2] Pchelintsev S. V., “O nilpotentnykh elementakh i nilradikalakh alternativnykh algebr”, Algebra i logika, 24:6 (1985), 674–695 | MR | Zbl

[3] Pchelintsev S. V., “Pervichnye alternativnye algebry”, Fundamentalnaya i prikladnaya matematika, 4:2 (1998), 651–657 | MR | Zbl

[4] Shestakov I. P., “Pervichnye alternativnye superalgebry proizvolnoi kharakteristiki”, Algebra i logika, 36:6 (1997), 675–716 | MR | Zbl

[5] Bruck R. H., A survey of binary systems, Springer, Berlin, 1958 | MR | Zbl

[6] Skosyrskii V. G., “Strogo pervichnye nekommutativnye iordanovy algebry”, Issledovaniya po teorii kolets i algebr, Nauka, Novosibirsk, 1989, 131–164 | MR

[7] Pchelintsev S. V., “O kruchenii svobodnogo alternativnogo koltsa”, Sib. matem. zhurn., 32:6 (1991), 142–149 | MR

[8] Pchelintsev S. V., “O tozhdestvakh svobodnykh konechno porozhdennykh alternativnykh algebr nad polem kharakteristiki 3”, Matem. sb., 192:9 (2001), 109–124 | MR | Zbl