A~factorization formula for the full twist of double the number of strings
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a formula for factorizing the full twist in the braid group $\operatorname{Br}_{2m}$ in terms of four factorizations of the full twist in$\operatorname{Br}_{m}$. This formula is used to construct a symplectic 4-manifold $X$ and two regularly homotopic generic coverings $f_i\colon X\to\mathbb C\mathbb P^2$ branched along cuspidal Hurwitz curves $\overline H_i\subset\mathbb C\mathbb P^2$ (without negative nodes) having different braid monodromy factorization types. The class of fundamental groups of complements of affine plane Hurwitz curves is described in terms of generators and defining relations.
@article{IM2_2004_68_1_a4,
     author = {Vik. S. Kulikov},
     title = {A~factorization formula for the full twist of double the number of strings},
     journal = {Izvestiya. Mathematics },
     pages = {125--158},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - A~factorization formula for the full twist of double the number of strings
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 125
EP  - 158
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/
LA  - en
ID  - IM2_2004_68_1_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T A~factorization formula for the full twist of double the number of strings
%J Izvestiya. Mathematics 
%D 2004
%P 125-158
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/
%G en
%F IM2_2004_68_1_a4
Vik. S. Kulikov. A~factorization formula for the full twist of double the number of strings. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/