A~factorization formula for the full twist of double the number of strings
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a formula for factorizing the full twist in the braid group $\operatorname{Br}_{2m}$
in terms of four factorizations of the full twist in$\operatorname{Br}_{m}$. This formula is used to construct a symplectic 4-manifold $X$ and two regularly homotopic generic coverings
$f_i\colon X\to\mathbb C\mathbb P^2$ branched along cuspidal Hurwitz curves
$\overline H_i\subset\mathbb C\mathbb P^2$ (without negative nodes) having different braid monodromy factorization types. The class of fundamental groups of complements of affine plane Hurwitz curves is described in terms of generators and defining relations.
@article{IM2_2004_68_1_a4,
author = {Vik. S. Kulikov},
title = {A~factorization formula for the full twist of double the number of strings},
journal = {Izvestiya. Mathematics },
pages = {125--158},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/}
}
Vik. S. Kulikov. A~factorization formula for the full twist of double the number of strings. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/