A~factorization formula for the full twist of double the number of strings
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a formula for factorizing the full twist in the braid group $\operatorname{Br}_{2m}$ in terms of four factorizations of the full twist in$\operatorname{Br}_{m}$. This formula is used to construct a symplectic 4-manifold $X$ and two regularly homotopic generic coverings $f_i\colon X\to\mathbb C\mathbb P^2$ branched along cuspidal Hurwitz curves $\overline H_i\subset\mathbb C\mathbb P^2$ (without negative nodes) having different braid monodromy factorization types. The class of fundamental groups of complements of affine plane Hurwitz curves is described in terms of generators and defining relations.
@article{IM2_2004_68_1_a4,
     author = {Vik. S. Kulikov},
     title = {A~factorization formula for the full twist of double the number of strings},
     journal = {Izvestiya. Mathematics },
     pages = {125--158},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - A~factorization formula for the full twist of double the number of strings
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 125
EP  - 158
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/
LA  - en
ID  - IM2_2004_68_1_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T A~factorization formula for the full twist of double the number of strings
%J Izvestiya. Mathematics 
%D 2004
%P 125-158
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/
%G en
%F IM2_2004_68_1_a4
Vik. S. Kulikov. A~factorization formula for the full twist of double the number of strings. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 125-158. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a4/

[1] Artin E., “Theorie der Zopfe”, Hamburg Abh., 4 (1925), 47–72 | DOI | Zbl

[2] Auroux D., “Symplectic $4$-manifolds as branched coverings of $\mathbb P^2$”, Invent. Math., 139 (2000), 551–602 | DOI | MR | Zbl

[3] Auroux D., Katzarkov L., “Branched coverings of $\mathbb P^2$ and invariants of symplectic $4$-manifolds”, Invent. Math., 142 (2000), 631–673 | DOI | MR | Zbl

[4] Burde G., Zieschang H., Knots, Walter de Gruyter, Berlin–N. Y., 1985 | MR | Zbl

[5] Gompf R., “Symplectically aspherical manifolds with nontrivial $\pi_2$”, Math. Res. Letters, 5 (1998), 599–603 | MR | Zbl

[6] Grauert H., Remmert R., “Komplexe Raume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[7] Kulikov Vik. S., Kharlamov V. M., “O breid-monodromnykh razlozheniyakh na mnozhiteli”, Izv. RAN. Ser. matem., 67:3 (2003), 79–118 | MR | Zbl

[8] Kulikov V. S., Kulikov Vik. S., “Obschie nakrytiya ploskosti s $A$-$D$-$E$-osobennostyami”, Izv. RAN. Ser. matem., 64:6 (2000), 1153–1195 | MR | Zbl

[9] Kulikov Vik. S., Taikher M., “Breid-monodromnye razlozheniya na mnozhiteli i diffeomorfnye tipy”, Izv. RAN. Ser. matem., 64:2 (2000), 311–341 | MR | Zbl

[10] Kulikov Vik. S., “O gipoteze Kizini”, Izv. RAN. Ser. matem., 63:6 (1999), 1139–1170 | MR | Zbl

[11] Kulikov Vik. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. matem., 58:4 (1994), 194–203 | MR | Zbl

[12] Kulikov Vik. S., “Obobschennaya gipoteza Kizini”, Tr. MIAN, 241, Nauka, M., 2003, 122–131 | MR | Zbl

[13] Nemirovskii S. Yu., “K teoreme Kulikova o gipoteze Kizini”, Izv. RAN. Ser. matem., 65:1 (2001), 71–74 | MR | Zbl

[14] Moishezon B., “Stable branch curves and braid monodromies”, Lect. Notes Math., 862, 1981, 107–192 | MR | Zbl

[15] Moishezon B., “The arithmetic of braids and a statement of Chisini”, Contemp. Math., 164 (1994), 151–175 | MR | Zbl

[16] Moishezon B., Teicher M., “Braid group technique in complex geometry. I: Line arrangements in $\mathbb C\mathbb P^2$”, Contemp. Math., 78 (1988), 425–555 | MR | Zbl

[17] Moishezon B., Teicher M., “Braid group technique in complex geometry. V: The fundamental group of a complement of a branch curve of a Veronese generic projection”, Comm. Anal. Geom., 4:11 (1996), 1–120 | MR | Zbl