The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1213-1242

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem $$ u_t+i\Delta u=\varepsilon(u-d|u|^2u), \qquad u\big|_{\partial \Omega}=0, $$ in the domain $\Omega=\{(x,y)\colon 0\leqslant x\leqslant 1,0\leqslant y\leqslant 1\}$, where $u$ is a complex-valued function, $\Delta$ is the Laplace operators, $0\varepsilon\ll1$ and $d=1+ic_0$, $c_0\in\mathbb R$. We establish that it has countably many stable solutions that are periodic in $t$. We study the question of whether this phenomenon is preserved under a change of domain or boundary conditions.
@article{IM2_2003_67_6_a4,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The existence of countably many stable cycles for a~generalized cubic {Schr\"odinger} equation in a~planar domain},
     journal = {Izvestiya. Mathematics },
     pages = {1213--1242},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1213
EP  - 1242
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/
LA  - en
ID  - IM2_2003_67_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
%J Izvestiya. Mathematics 
%D 2003
%P 1213-1242
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/
%G en
%F IM2_2003_67_6_a4
A. Yu. Kolesov; N. Kh. Rozov. The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1213-1242. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/