The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1213-1242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem $$ u_t+i\Delta u=\varepsilon(u-d|u|^2u), \qquad u\big|_{\partial \Omega}=0, $$ in the domain $\Omega=\{(x,y)\colon 0\leqslant x\leqslant 1,0\leqslant y\leqslant 1\}$, where $u$ is a complex-valued function, $\Delta$ is the Laplace operators, $0\varepsilon\ll1$ and $d=1+ic_0$, $c_0\in\mathbb R$. We establish that it has countably many stable solutions that are periodic in $t$. We study the question of whether this phenomenon is preserved under a change of domain or boundary conditions.
@article{IM2_2003_67_6_a4,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The existence of countably many stable cycles for a~generalized cubic {Schr\"odinger} equation in a~planar domain},
     journal = {Izvestiya. Mathematics },
     pages = {1213--1242},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1213
EP  - 1242
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/
LA  - en
ID  - IM2_2003_67_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
%J Izvestiya. Mathematics 
%D 2003
%P 1213-1242
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/
%G en
%F IM2_2003_67_6_a4
A. Yu. Kolesov; N. Kh. Rozov. The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1213-1242. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a4/

[1] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii”, Tr. MIAN, 222, Nauka, M., 1998

[2] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Yavlenie bufernosti v rezonansnykh sistemakh nelineinykh giperbolicheskikh uravnenii”, UMN, 55:2(332) (2000), 95–120 | MR | Zbl

[3] Kolesov A. Yu., Rozov N. Kh., “Asimptoticheskaya teoriya kolebanii v sisteme Vitta”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozh., 67, VINITI, M., 1999, 5–69 | MR

[4] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. MIAN, 233, Nauka, M., 2001, 153–207 | MR | Zbl

[5] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, DAN SSSR, 315:2 (1990), 281–283 | MR | Zbl

[6] Kolesov A. Yu., “Suschestvovanie schetnogo chisla ustoichivykh tsiklov v sredakh s dispersiei”, Izv. RAN. Ser. matem., 59:3 (1995), 141–158 | MR | Zbl

[7] Nelineinye volny, eds. Leibovich S., Sibass A., Mir, M., 1977 | MR

[8] Skott E., Volny v aktivnykh i nelineinykh sredakh v prilozhenii k elektronike, Sovetskoe radio, M., 1977

[9] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[10] Landa P. S., Nelineinye kolebaniya i volny, Fizmatlit, M., 1997 | MR

[11] Scheuer J., Malomed B. A., “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Physica D, 161 (2002), 102–115 | DOI | Zbl

[12] Zakharov A. A., Kolesov Yu. S., “Prostranstvenno neodnorodnye rezhimy v zadache khischnik–zhertva”, Nelineinye kolebaniya i ekologiya, Yaroslavl, 1984, 3–15 | MR

[13] Kolesov A. Yu., Rozov N. Kh., “Diffuzionnaya bufernost v odnoi matematicheskoi modeli biologii”, Izv. RAN. Ser. matem., 62:5 (1998), 135–164 | MR | Zbl

[14] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[15] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[16] Kolesov Yu. S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Matem. sb., 184:3 (1993), 121–136 | Zbl

[17] Kolesov A. Yu., Rozov N. Kh., “Osobennosti dinamiki uravneniya Ginzburga–Landau v ploskoi oblasti”, TMF, 125:2 (2000), 205–220 | MR | Zbl