Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_6_a0, author = {A. N. Bakhvalov}, title = {Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional {Fourier} integrals}, journal = {Izvestiya. Mathematics }, pages = {1081--1100}, publisher = {mathdoc}, volume = {67}, number = {6}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/} }
TY - JOUR AU - A. N. Bakhvalov TI - Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals JO - Izvestiya. Mathematics PY - 2003 SP - 1081 EP - 1100 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/ LA - en ID - IM2_2003_67_6_a0 ER -
A. N. Bakhvalov. Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1081-1100. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/
[1] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl
[2] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR, 21:6 (1986), 517–529 | MR
[3] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1987
[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matematika, 1987, no. 10, 66–68 | MR | Zbl
[5] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl
[6] Zigmund A., Trigonometricheskie ryady, 2, Mir, M., 1965 | MR
[7] Bakhvalov A. N., “O predstavlenii neperiodicheskikh funktsii ogranichennoi $\Lambda$-variatsii integralom Fure”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1998, no. 3, 6–12 | MR | Zbl
[8] Dragoshanskii O. S., “O nepreryvnosti dvumernoi $\Lambda$-variatsii”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 11-i Saratovskoi zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2002, 71–72
[9] Goffman C., Waterman D., “The localization principle for Fourier series”, Studia Math., 99:1 (1980), 41–57 | MR
[10] Schramm M., Waterman D., “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 408–410 | DOI | MR