Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals
Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1081-1100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are established for the convergence of the multiple Fourier integral of a Pringsheim integrable function (in the sense of convergence of partial integrals over parallelepipeds) in terms of the membership of the function in classes of bounded $\Lambda$-variation. These conditions require the following: the function should belong to a class of bounded harmonic variation, the point under consideration should be regular, the harmonic variation should behave “well” in the neighbourhood of the point, and the function should be continuous with respect to the harmonic variation on a special subset in the neighbourhood of infinity. It is also shown that, in general, neither of the last two conditions can be dropped.
@article{IM2_2003_67_6_a0,
     author = {A. N. Bakhvalov},
     title = {Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional {Fourier} integrals},
     journal = {Izvestiya. Mathematics },
     pages = {1081--1100},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1081
EP  - 1100
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/
LA  - en
ID  - IM2_2003_67_6_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals
%J Izvestiya. Mathematics 
%D 2003
%P 1081-1100
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/
%G en
%F IM2_2003_67_6_a0
A. N. Bakhvalov. Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1081-1100. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a0/

[1] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR, 21:6 (1986), 517–529 | MR

[3] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1987

[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matematika, 1987, no. 10, 66–68 | MR | Zbl

[5] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl

[6] Zigmund A., Trigonometricheskie ryady, 2, Mir, M., 1965 | MR

[7] Bakhvalov A. N., “O predstavlenii neperiodicheskikh funktsii ogranichennoi $\Lambda$-variatsii integralom Fure”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1998, no. 3, 6–12 | MR | Zbl

[8] Dragoshanskii O. S., “O nepreryvnosti dvumernoi $\Lambda$-variatsii”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 11-i Saratovskoi zimnei shkoly, Izd-vo GosUNTs “Kolledzh”, Saratov, 2002, 71–72

[9] Goffman C., Waterman D., “The localization principle for Fourier series”, Studia Math., 99:1 (1980), 41–57 | MR

[10] Schramm M., Waterman D., “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 408–410 | DOI | MR