Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1031-1060.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of Bogolyubov's theorem with constraints in the form of a controlled second-order evolution system. The main assertion of this theorem deals with relations between the values of an integral functional that is non-convex with respect to control on the solutions of a controlled system with non-convex constraints on the control and the values of the functional convexified with respect to control on the solutions of a controlled system with convexified constraints. This theorem also establishes relations between the solutions of non-convex and convexified controlled systems. We apply the theorem to the problem of minimizing a non-convex integral functional on the solutions of a non-convex controlled system. We consider in detail an example of a non-linear hyperbolic system.
@article{IM2_2003_67_5_a7,
     author = {A. A. Tolstonogov},
     title = {Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system},
     journal = {Izvestiya. Mathematics },
     pages = {1031--1060},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1031
EP  - 1060
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/
LA  - en
ID  - IM2_2003_67_5_a7
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system
%J Izvestiya. Mathematics 
%D 2003
%P 1031-1060
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/
%G en
%F IM2_2003_67_5_a7
A. A. Tolstonogov. Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1031-1060. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/

[1] Bogolyubov N. N., “Sur quelques method nonvelles dans le calculas des variations”, Ann. Math. Pura Appl. Ser. 4, 7 (1930), 249–271 | DOI | MR

[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[4] Suslov S. I., “Teorema Bogolyubova s ogranicheniem v vide differentsialnogo vklyucheniya”, Sib. matem. zhurn., 35:4 (1994), 902–914 | MR | Zbl

[5] Zeidler E., Nonlinear functional analysis and its applications, V. II, Springer, N. Y., 1990

[6] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[7] Ahmed N. U., Kerbal S., “Optimal control of nonlinear second order evolution equations”, J. Appl. Math. and Stochastic Anal., 6 (1993), 123–136 | DOI | MR

[8] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976 | MR | Zbl

[9] Tolstonogov A. A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Matem. sb., 190:11 (1999), 135–160 | MR | Zbl

[10] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl

[11] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl

[12] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[13] Kisielewicz M., Differential inclusions and optimal control, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991 | MR

[14] Kuratovskii K., Topologiya, T. II, Mir, M., 1969 | MR

[15] Balder E. J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal. Theory. Meth. Appl., 11:12 (1987), 1399–1404 | DOI | MR | Zbl

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1997), 149–182 | DOI | MR

[18] Shvarts L., Analiz, T. 1, Mir, M., 1972

[19] Tolstonogov A. A., Differential inclusions in a Banach space, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000 | MR | Zbl