Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_5_a7, author = {A. A. Tolstonogov}, title = {Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system}, journal = {Izvestiya. Mathematics }, pages = {1031--1060}, publisher = {mathdoc}, volume = {67}, number = {5}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/} }
TY - JOUR AU - A. A. Tolstonogov TI - Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system JO - Izvestiya. Mathematics PY - 2003 SP - 1031 EP - 1060 VL - 67 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/ LA - en ID - IM2_2003_67_5_a7 ER -
A. A. Tolstonogov. Bogolyubov's theorem under constraints generated by a~controlled second-order evolution system. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1031-1060. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a7/
[1] Bogolyubov N. N., “Sur quelques method nonvelles dans le calculas des variations”, Ann. Math. Pura Appl. Ser. 4, 7 (1930), 249–271 | DOI | MR
[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[4] Suslov S. I., “Teorema Bogolyubova s ogranicheniem v vide differentsialnogo vklyucheniya”, Sib. matem. zhurn., 35:4 (1994), 902–914 | MR | Zbl
[5] Zeidler E., Nonlinear functional analysis and its applications, V. II, Springer, N. Y., 1990
[6] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959
[7] Ahmed N. U., Kerbal S., “Optimal control of nonlinear second order evolution equations”, J. Appl. Math. and Stochastic Anal., 6 (1993), 123–136 | DOI | MR
[8] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976 | MR | Zbl
[9] Tolstonogov A. A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Matem. sb., 190:11 (1999), 135–160 | MR | Zbl
[10] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl
[11] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl
[12] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl
[13] Kisielewicz M., Differential inclusions and optimal control, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991 | MR
[14] Kuratovskii K., Topologiya, T. II, Mir, M., 1969 | MR
[15] Balder E. J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal. Theory. Meth. Appl., 11:12 (1987), 1399–1404 | DOI | MR | Zbl
[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[17] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1997), 149–182 | DOI | MR
[18] Shvarts L., Analiz, T. 1, Mir, M., 1972
[19] Tolstonogov A. A., Differential inclusions in a Banach space, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000 | MR | Zbl