On the Brauer group of an arithmetic scheme.~II
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1007-1029

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi\colon X\to\operatorname{Spec}A$ be an arithmetic model of a regular smooth projective variety $V$ over a number field $k$. We prove the finiteness of $H^1(\operatorname{Spec} A,R^1\pi_\ast\operatorname{G}_m)$ under the assumption that $\pi_\ast\operatorname{G}_m=\operatorname{G}_m$ for the étale topology. (This assumption holds automatically if all geometric fibres of $\pi$ are reduced and connected.) If a prime $l$ does not divide $\operatorname{Card}([\operatorname{NS}(V\otimes \bar k)]_{\mathrm{tors}})$, $V(k)\ne\varnothing$, and the Tate conjecture holds for divisors on $V$, then the $l$-primary component $\operatorname{Br}'(X)(l)$ is finite. We also study finiteness properties of the Brauer group of a Calabi–Yau variety $V$ of dimension $\geqslant 2$ over a number field.
@article{IM2_2003_67_5_a6,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group of an arithmetic {scheme.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {1007--1029},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group of an arithmetic scheme.~II
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1007
EP  - 1029
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/
LA  - en
ID  - IM2_2003_67_5_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group of an arithmetic scheme.~II
%J Izvestiya. Mathematics 
%D 2003
%P 1007-1029
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/
%G en
%F IM2_2003_67_5_a6
S. G. Tankeev. On the Brauer group of an arithmetic scheme.~II. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1007-1029. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/