On the Brauer group of an arithmetic scheme.~II
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1007-1029.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi\colon X\to\operatorname{Spec}A$ be an arithmetic model of a regular smooth projective variety $V$ over a number field $k$. We prove the finiteness of $H^1(\operatorname{Spec} A,R^1\pi_\ast\operatorname{G}_m)$ under the assumption that $\pi_\ast\operatorname{G}_m=\operatorname{G}_m$ for the étale topology. (This assumption holds automatically if all geometric fibres of $\pi$ are reduced and connected.) If a prime $l$ does not divide $\operatorname{Card}([\operatorname{NS}(V\otimes \bar k)]_{\mathrm{tors}})$, $V(k)\ne\varnothing$, and the Tate conjecture holds for divisors on $V$, then the $l$-primary component $\operatorname{Br}'(X)(l)$ is finite. We also study finiteness properties of the Brauer group of a Calabi–Yau variety $V$ of dimension $\geqslant 2$ over a number field.
@article{IM2_2003_67_5_a6,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group of an arithmetic {scheme.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {1007--1029},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group of an arithmetic scheme.~II
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1007
EP  - 1029
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/
LA  - en
ID  - IM2_2003_67_5_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group of an arithmetic scheme.~II
%J Izvestiya. Mathematics 
%D 2003
%P 1007-1029
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/
%G en
%F IM2_2003_67_5_a6
S. G. Tankeev. On the Brauer group of an arithmetic scheme.~II. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 1007-1029. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a6/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[2] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[4] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[5] Grothendieck A., “Technique de descente et théorèmes d'existence en géométrie algébrique. V: Les schémas de Picard: théorèmes d'existence”, Séminaire Bourbaki, Exposé 232, 1961–1962, 1–19

[6] Grothendieck A., “Eléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents”, Publ. Math. IHES, 17 (1963) | Zbl

[7] Grothendieck A., “Eléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes des schémas”, Publ. Math. IHES, 24 (1965) | Zbl

[8] Grothendieck A., “Eléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes des schémas”, Publ. Math. IHES, 32 (1967) | Zbl

[9] Grothendieck A., “Le groupe de Brauer, III”, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 88–188 | MR

[10] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[11] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[12] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[13] Raynaud M., “Spécialisation du foncteur de Picard”, Publ. Math. IHES, 39 (1970), 27–76 | MR

[14] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | MR

[15] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[16] Tankeev S. G., “Poverkhnosti tipa $\mathrm{K}3$ nad chislovymi polyami i $l$-adicheskie predstavleniya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1252–1271

[17] Tankeev S. G., “O gruppe Brauera”, Izv. RAN. Ser. matem., 64:4 (2000), 141–162 | MR | Zbl

[18] Tankeev S. G., “O gruppe Brauera arifmeticheskoi skhemy”, Izv. RAN. Ser. matem., 65:2 (2001), 155–186 | MR | Zbl

[19] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, N.Y., 1965, 93–110 | MR

[20] Tate J., “On the conjectures of Birch and Swinnerton–Dyer and a geometric analog”, Séminaire Bourbaki, Exposé 306, 1965–1966, 1–26

[21] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR