Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_5_a0, author = {G. G. Ilyuta}, title = {Interpolation by symmetric functions and alternating higher {Bruhat} orders}, journal = {Izvestiya. Mathematics }, pages = {849--880}, publisher = {mathdoc}, volume = {67}, number = {5}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/} }
G. G. Ilyuta. Interpolation by symmetric functions and alternating higher Bruhat orders. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 849-880. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/
[1] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1971 | MR
[2] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954
[3] Griffits F., Kharris D., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR
[4] Dzheffris G., Svirls B., Metody matematicheskoi fiziki, T. 2, Mir, M., 1970
[5] Ilyuta G. G., “Geometricheskie realizatsii vysshikh poryadkov Bryua i $M$-morsifikatsii”, Izv. RAN. Ser. matem., 60:6 (1996), 91–100 | MR | Zbl
[6] Ilyuta G. G., “Razdelennye raznosti dlya simmetricheskikh funktsii i alternirovannye vysshie poryadki Bryua”, UMN, 56:2 (2001), 217–218 | MR | Zbl
[7] Ilyuta G. G., “Diagrammy A'Kampo–Gusein-Zade kak chastichno uporyadochennye mnozhestva”, Izv. RAN. Ser. matem., 65:4 (2001), 49–66 | MR | Zbl
[8] Manin Y. I., Schechtman V. V., “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Adv. Stud. Pure Math., 17 (1989), 289–308 | MR | Zbl
[9] Ziegler G., “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32 (1993), 259–279 | DOI | MR | Zbl
[10] Chen W., Louck J., “Interpolation for symmetric functions”, Adv. Math., 117 (1996), 147–156 | DOI | MR | Zbl
[11] Macdonald I., Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford, 1995 | MR | Zbl
[12] Macdonald I., “Schubert polynomials”, Surveys in combinatorics, London Math. Soc. Lect. Notes Ser., 166, ed. A. D. Kendwell, Cambridge Univ. Press, Cambridge, 1991, 73–99 | MR
[13] Hirschhorn P., Raphael L., “Coalgebraic foundations of the methods of divided differences”, Adv. Math., 91 (1992), 75–135 | DOI | MR | Zbl
[14] Kirillov A. N., Noumi M., “Affine Hecke algebras and raising operators for Macdonald polynomials”, Duke Math. J., 93 (1998), 1–39 | DOI | MR | Zbl
[15] Chu W., “Divided differences and symmetric functions”, Boll. U.M.I. 2B, 8 (1999), 609–618 | MR | Zbl
[16] Orlik P., Terao H., Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992 | MR | Zbl
[17] Arnold V. I., “Springer number and morsification spaces”, J. Alg. Geom., 1 (1992), 197–214 | MR | Zbl
[18] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl
[19] Leibman A., “Fiber bundles with degenerations and their applications to computing fundamental groups”, Geom. Dedicata, 48 (1993), 93–126 | DOI | MR | Zbl
[20] Moulton V., “Vector braids”, J. Pure Appl. Alg., 131 (1998), 245–296 | DOI | MR | Zbl
[21] Sturmfels B., “Cyclic polytopes and $d$-order curves”, Geom. Dedicata, 24 (1987), 103–107 | DOI | MR | Zbl
[22] Sturmfels B., Zelevinsky A., “Maximal minors and their leading terms”, Adv. Math., 98 (1993), 65–112 | DOI | MR | Zbl
[23] Cordovil R., Duchet P., “Cyclic polytopes and oriented matroids”, Eur. J. Comb., 21 (2000), 49–64 | DOI | MR | Zbl
[24] Rambau J., “Triangulations of cyclic polytopes and higher Bruhat orders”, Mathematika, 44 (1997), 162–194 | MR | Zbl
[25] Gale D., “Neighborly and cyclic polytopes”, Proc. Symp. Pure Math., 7 (1963), 225–232 | MR | Zbl
[26] Domokos D., “Gröbner bases of certain determinantal ideals”, Beitrage Alg. Geom., 40 (1999), 479–493 | MR | Zbl
[27] Bernstein D., Zelevinsky A., “Combinatorics of maximal minors”, J. Alg. Comb., 2 (1993), 111–121 | DOI | MR | Zbl
[28] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR
[29] Felsner S., Weil H., “A theorem on higher Bruhat orders”, Discrete Comput. Geom., 23 (2000), 121–127 | DOI | MR | Zbl
[30] Billera L., Sturmfels B., “Fiber polytopes”, Ann. Math., 135 (1992), 527–549 | DOI | MR | Zbl
[31] Pragacz P., “Symmetric polynomials and divided differences in formulas of intersection theory”, Parameter spaces, 36, Banach Center Publ., Warsaw, 1996, 125–177 | MR | Zbl
[32] Lascoux A., Schutzenberger M.-P., “Interpolation de Newton a plusieurs variables”, Lect. Notes Math., 1146, 1985, 161–175 | MR | Zbl
[33] Lascoux A., “Interpolation de Lagrange”, On orthogonal polynomials and their applications, V. 1, Acad. Nat. Zaragoza, Zaragoza, 1988, 95–101 | MR | Zbl
[34] Salzer H., “A determinant form for non-linear divided differences with applications”, Z. Angew. Math. Mech., 66 (1986), 183–185 | DOI | MR | Zbl
[35] Fulton W., Young tableaux with application to representation theory and geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[36] Louck J., “MacMahon's master theorem double tableau polynomials and representations of groups”, Adv. Appl. Math., 17 (1996), 143–168 | DOI | MR | Zbl
[37] Stanley R., Enumerative combinatorics, V. 2, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[38] Verde-Star L., “Divided differences and combinatorial identities”, Stud. Appl. Math., 85 (1991), 215–242 | MR | Zbl
[39] Neamtu M., “Homogeneous simplex splines”, J. Comput. Appl. Math., 73 (1996), 173–189 | DOI | MR | Zbl
[40] Mimachi K., “A duality of Macdonald–Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107:2 (2001), 265–281 | DOI | MR | Zbl
[41] Ilyuta G. G., “Vysshie poryadki Bryua, formula Eilera–Yakobi i tozhdestvo Turnbulla”, UMN, 58:4 (2003), 149–150 | MR | Zbl