Interpolation by symmetric functions and alternating higher Bruhat orders
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 849-880

Voir la notice de l'article provenant de la source Math-Net.Ru

We study interpolation by Grassmannian Schubert polynomials (Schur functions). We prove versions of the Sturmfels–Zelevinsky formula for the product of the maximal minors of rectangular matrices corresponding to elementary symmetric functions and Schur functions, and deduce from them generalizations of formulae for the Cauchy–Vandermonde determinant and Cauchy's formula for Schur functions. We define generalizations of higher Bruhat orders whose elements encode connected components of configuration spaces, and also generalizations of discriminantal Manin–Schechtman arrangements.
@article{IM2_2003_67_5_a0,
     author = {G. G. Ilyuta},
     title = {Interpolation by symmetric functions and alternating higher {Bruhat} orders},
     journal = {Izvestiya. Mathematics },
     pages = {849--880},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/}
}
TY  - JOUR
AU  - G. G. Ilyuta
TI  - Interpolation by symmetric functions and alternating higher Bruhat orders
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 849
EP  - 880
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/
LA  - en
ID  - IM2_2003_67_5_a0
ER  - 
%0 Journal Article
%A G. G. Ilyuta
%T Interpolation by symmetric functions and alternating higher Bruhat orders
%J Izvestiya. Mathematics 
%D 2003
%P 849-880
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/
%G en
%F IM2_2003_67_5_a0
G. G. Ilyuta. Interpolation by symmetric functions and alternating higher Bruhat orders. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 849-880. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/