Interpolation by symmetric functions and alternating higher Bruhat orders
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 849-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study interpolation by Grassmannian Schubert polynomials (Schur functions). We prove versions of the Sturmfels–Zelevinsky formula for the product of the maximal minors of rectangular matrices corresponding to elementary symmetric functions and Schur functions, and deduce from them generalizations of formulae for the Cauchy–Vandermonde determinant and Cauchy's formula for Schur functions. We define generalizations of higher Bruhat orders whose elements encode connected components of configuration spaces, and also generalizations of discriminantal Manin–Schechtman arrangements.
@article{IM2_2003_67_5_a0,
     author = {G. G. Ilyuta},
     title = {Interpolation by symmetric functions and alternating higher {Bruhat} orders},
     journal = {Izvestiya. Mathematics },
     pages = {849--880},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/}
}
TY  - JOUR
AU  - G. G. Ilyuta
TI  - Interpolation by symmetric functions and alternating higher Bruhat orders
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 849
EP  - 880
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/
LA  - en
ID  - IM2_2003_67_5_a0
ER  - 
%0 Journal Article
%A G. G. Ilyuta
%T Interpolation by symmetric functions and alternating higher Bruhat orders
%J Izvestiya. Mathematics 
%D 2003
%P 849-880
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/
%G en
%F IM2_2003_67_5_a0
G. G. Ilyuta. Interpolation by symmetric functions and alternating higher Bruhat orders. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 849-880. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a0/

[1] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1971 | MR

[2] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954

[3] Griffits F., Kharris D., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[4] Dzheffris G., Svirls B., Metody matematicheskoi fiziki, T. 2, Mir, M., 1970

[5] Ilyuta G. G., “Geometricheskie realizatsii vysshikh poryadkov Bryua i $M$-morsifikatsii”, Izv. RAN. Ser. matem., 60:6 (1996), 91–100 | MR | Zbl

[6] Ilyuta G. G., “Razdelennye raznosti dlya simmetricheskikh funktsii i alternirovannye vysshie poryadki Bryua”, UMN, 56:2 (2001), 217–218 | MR | Zbl

[7] Ilyuta G. G., “Diagrammy A'Kampo–Gusein-Zade kak chastichno uporyadochennye mnozhestva”, Izv. RAN. Ser. matem., 65:4 (2001), 49–66 | MR | Zbl

[8] Manin Y. I., Schechtman V. V., “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Adv. Stud. Pure Math., 17 (1989), 289–308 | MR | Zbl

[9] Ziegler G., “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32 (1993), 259–279 | DOI | MR | Zbl

[10] Chen W., Louck J., “Interpolation for symmetric functions”, Adv. Math., 117 (1996), 147–156 | DOI | MR | Zbl

[11] Macdonald I., Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[12] Macdonald I., “Schubert polynomials”, Surveys in combinatorics, London Math. Soc. Lect. Notes Ser., 166, ed. A. D. Kendwell, Cambridge Univ. Press, Cambridge, 1991, 73–99 | MR

[13] Hirschhorn P., Raphael L., “Coalgebraic foundations of the methods of divided differences”, Adv. Math., 91 (1992), 75–135 | DOI | MR | Zbl

[14] Kirillov A. N., Noumi M., “Affine Hecke algebras and raising operators for Macdonald polynomials”, Duke Math. J., 93 (1998), 1–39 | DOI | MR | Zbl

[15] Chu W., “Divided differences and symmetric functions”, Boll. U.M.I. 2B, 8 (1999), 609–618 | MR | Zbl

[16] Orlik P., Terao H., Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992 | MR | Zbl

[17] Arnold V. I., “Springer number and morsification spaces”, J. Alg. Geom., 1 (1992), 197–214 | MR | Zbl

[18] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | MR | Zbl

[19] Leibman A., “Fiber bundles with degenerations and their applications to computing fundamental groups”, Geom. Dedicata, 48 (1993), 93–126 | DOI | MR | Zbl

[20] Moulton V., “Vector braids”, J. Pure Appl. Alg., 131 (1998), 245–296 | DOI | MR | Zbl

[21] Sturmfels B., “Cyclic polytopes and $d$-order curves”, Geom. Dedicata, 24 (1987), 103–107 | DOI | MR | Zbl

[22] Sturmfels B., Zelevinsky A., “Maximal minors and their leading terms”, Adv. Math., 98 (1993), 65–112 | DOI | MR | Zbl

[23] Cordovil R., Duchet P., “Cyclic polytopes and oriented matroids”, Eur. J. Comb., 21 (2000), 49–64 | DOI | MR | Zbl

[24] Rambau J., “Triangulations of cyclic polytopes and higher Bruhat orders”, Mathematika, 44 (1997), 162–194 | MR | Zbl

[25] Gale D., “Neighborly and cyclic polytopes”, Proc. Symp. Pure Math., 7 (1963), 225–232 | MR | Zbl

[26] Domokos D., “Gröbner bases of certain determinantal ideals”, Beitrage Alg. Geom., 40 (1999), 479–493 | MR | Zbl

[27] Bernstein D., Zelevinsky A., “Combinatorics of maximal minors”, J. Alg. Comb., 2 (1993), 111–121 | DOI | MR | Zbl

[28] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR

[29] Felsner S., Weil H., “A theorem on higher Bruhat orders”, Discrete Comput. Geom., 23 (2000), 121–127 | DOI | MR | Zbl

[30] Billera L., Sturmfels B., “Fiber polytopes”, Ann. Math., 135 (1992), 527–549 | DOI | MR | Zbl

[31] Pragacz P., “Symmetric polynomials and divided differences in formulas of intersection theory”, Parameter spaces, 36, Banach Center Publ., Warsaw, 1996, 125–177 | MR | Zbl

[32] Lascoux A., Schutzenberger M.-P., “Interpolation de Newton a plusieurs variables”, Lect. Notes Math., 1146, 1985, 161–175 | MR | Zbl

[33] Lascoux A., “Interpolation de Lagrange”, On orthogonal polynomials and their applications, V. 1, Acad. Nat. Zaragoza, Zaragoza, 1988, 95–101 | MR | Zbl

[34] Salzer H., “A determinant form for non-linear divided differences with applications”, Z. Angew. Math. Mech., 66 (1986), 183–185 | DOI | MR | Zbl

[35] Fulton W., Young tableaux with application to representation theory and geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[36] Louck J., “MacMahon's master theorem double tableau polynomials and representations of groups”, Adv. Appl. Math., 17 (1996), 143–168 | DOI | MR | Zbl

[37] Stanley R., Enumerative combinatorics, V. 2, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[38] Verde-Star L., “Divided differences and combinatorial identities”, Stud. Appl. Math., 85 (1991), 215–242 | MR | Zbl

[39] Neamtu M., “Homogeneous simplex splines”, J. Comput. Appl. Math., 73 (1996), 173–189 | DOI | MR | Zbl

[40] Mimachi K., “A duality of Macdonald–Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107:2 (2001), 265–281 | DOI | MR | Zbl

[41] Ilyuta G. G., “Vysshie poryadki Bryua, formula Eilera–Yakobi i tozhdestvo Turnbulla”, UMN, 58:4 (2003), 149–150 | MR | Zbl