Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_4_a6, author = {M. E. Changa}, title = {Numbers whose prime divisors lie in special intervals}, journal = {Izvestiya. Mathematics }, pages = {837--848}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/} }
M. E. Changa. Numbers whose prime divisors lie in special intervals. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 837-848. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/
[1] Vinogradov I. M., “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7 (49):2 (1940), 365–372 | MR | Zbl
[2] Leitmann D., “On the uniform distribution of some sequences”, J. London Math. Soc., 14 (1976), 430–432 | DOI | MR | Zbl
[3] Baker R. C., Kolesnik G., “On the distribution of $p^{\alpha}$ modulo one”, J. Reine Angew. Math., 356 (1985), 174–193 | MR | Zbl
[4] Changa M. E., “Prostye chisla v spetsialnykh promezhutkakh i additivnye zadachi s takimi chislami”, Matem. zametki, 73:3 (2003), 423–436 | MR | Zbl
[5] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953
[6] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963
[7] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR
[8] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, V. 2, Teubner, Leipzig, 1909 | Zbl
[9] Bredikhin B. M., “Ostatochnyi chlen v asimptoticheskoi formule dlya $\nu_G(x)$”, Izv. vuzov SSSR. Matematika, 1960, no. 6(19), 40–49 | MR | Zbl
[10] Levin B. V., Fainleib A. S., “Primenenie nekotorykh integralnykh uravnenii k voprosam teorii chisel”, UMN, 22:3 (135) (1967), 119–198 | MR