Numbers whose prime divisors lie in special intervals
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 837-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution of numbers whose prime divisors lie in special intervals. Various multiplicative functions are summed over these numbers. For these summatory functions we obtain asymptotic formulae whose principal term is a sum of an increasing number of summands. We show that this sum can be approximated, up to the first rejected term, by a finite number of its summands. We also discuss relations on the parameters of the problem under which the principal term of such asymptotic formulae becomes a finite sum.
@article{IM2_2003_67_4_a6,
     author = {M. E. Changa},
     title = {Numbers whose prime divisors lie in special intervals},
     journal = {Izvestiya. Mathematics },
     pages = {837--848},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - Numbers whose prime divisors lie in special intervals
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 837
EP  - 848
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/
LA  - en
ID  - IM2_2003_67_4_a6
ER  - 
%0 Journal Article
%A M. E. Changa
%T Numbers whose prime divisors lie in special intervals
%J Izvestiya. Mathematics 
%D 2003
%P 837-848
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/
%G en
%F IM2_2003_67_4_a6
M. E. Changa. Numbers whose prime divisors lie in special intervals. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 837-848. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a6/

[1] Vinogradov I. M., “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7 (49):2 (1940), 365–372 | MR | Zbl

[2] Leitmann D., “On the uniform distribution of some sequences”, J. London Math. Soc., 14 (1976), 430–432 | DOI | MR | Zbl

[3] Baker R. C., Kolesnik G., “On the distribution of $p^{\alpha}$ modulo one”, J. Reine Angew. Math., 356 (1985), 174–193 | MR | Zbl

[4] Changa M. E., “Prostye chisla v spetsialnykh promezhutkakh i additivnye zadachi s takimi chislami”, Matem. zametki, 73:3 (2003), 423–436 | MR | Zbl

[5] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[6] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963

[7] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[8] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, V. 2, Teubner, Leipzig, 1909 | Zbl

[9] Bredikhin B. M., “Ostatochnyi chlen v asimptoticheskoi formule dlya $\nu_G(x)$”, Izv. vuzov SSSR. Matematika, 1960, no. 6(19), 40–49 | MR | Zbl

[10] Levin B. V., Fainleib A. S., “Primenenie nekotorykh integralnykh uravnenii k voprosam teorii chisel”, UMN, 22:3 (135) (1967), 119–198 | MR