Iso-Huygens deformations of the Cayley operator by the general Lagnese--Stellmacher potential
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 815-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study iso-Huygens deformations of higher-order hyperbolic differential operators on the space of real symmetric matrices. Using the so-called skew symmetries, we introduce intertwining operators, which enable us to express fundamental solutions for these deformations in an explicit form and obtain conditions under which the strong Huygens principle holds for these deformations.
@article{IM2_2003_67_4_a5,
     author = {S. P. Khekalo},
     title = {Iso-Huygens deformations of the {Cayley} operator by the general {Lagnese--Stellmacher} potential},
     journal = {Izvestiya. Mathematics },
     pages = {815--836},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a5/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Iso-Huygens deformations of the Cayley operator by the general Lagnese--Stellmacher potential
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 815
EP  - 836
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a5/
LA  - en
ID  - IM2_2003_67_4_a5
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Iso-Huygens deformations of the Cayley operator by the general Lagnese--Stellmacher potential
%J Izvestiya. Mathematics 
%D 2003
%P 815-836
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a5/
%G en
%F IM2_2003_67_4_a5
S. P. Khekalo. Iso-Huygens deformations of the Cayley operator by the general Lagnese--Stellmacher potential. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 815-836. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a5/

[1] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, UMN, 49:6 (1994), 8–78 | MR

[2] Berest Y., “Hierarchies of Huygens' Operators and Hadamard's Conjecture”, Acta Appl. Math., 53 (1998), 125–185 | DOI | MR | Zbl

[3] Chalykh O. A., Feigin M. V., Veselov A. P., “Multidimensional Baker–Akhiezer Function and Huygens' Principle”, Commun. Math. Phys., 206 (1999), 533–566 | DOI | MR | Zbl

[4] Gabrielov A. M., Palamodov V. P., “Printsip Gyuigensa i ego obobscheniya”, I. G. Petrovskii, Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya. Izbrannye trudy, Nauka, M., 1968, 449–456 | MR

[5] Berest Y., “The problem of lacunas and analysis on root systems”, Trans. of the Amer. Math. Soc., 352:8 (2000), 3743–3776 | DOI | MR | Zbl

[6] Gindikin S. G., “Analiz v odnorodnykh oblastyakh”, UMN, 19:4(118) (1964), 3–92 | MR | Zbl

[7] Vainberg B. R., Gindikin S. G., “Ob usilennom printsipe Gyuigensa dlya odnogo klassa differentsialnykh operatorov s postoyannymi koeffitsientami”, Tr. Mosk. matem. ob-va, 16 (1967), 151–180 | MR | Zbl

[8] Khekalo S. P., “Izogyuigensovy deformatsii odnorodnykh differentsialnykh operatorov, svyazannykh so spetsialnym konusom ranga tri”, Matem. zametki, 70:6 (2001), 927–940 | MR | Zbl

[9] Garding L., “The solution of Cauchy's problem for two totally hyperbolic differential equations by means of Riesz integrals”, Ann. Math., 48:4 (1947), 785–826 | DOI | MR | Zbl

[10] Khekalo S. P., “Fundamentalnoe reshenie iterirovannogo operatora tipa Keli–Gordinga”, UMN, 55:3 (2000), 191–192 | MR | Zbl

[11] Berest Y., Molchanov Y., “Fundamental solution for partial differential equations with reflection group invariance”, J. Math. Phis., 36:8 (1995), 4324–4339 | DOI | MR | Zbl

[12] Berest Y. Y., Loutsenko I. M., “Huygens' Principle in Minkowski Spaces and Soliton Solutions of the Korteweg–de Vries Equation”, Commun. Math. Phys., 190 (1997), 113–132 | DOI | MR | Zbl

[13] Riesz M., “L'integrale de Riemann–Liouville et le probleme de Cauchi”, Acta Math., 81 (1949), 1–223 | DOI | MR | Zbl

[14] Demidov E. E., Ierarkhiya Kadomtseva–Petviashvili i problema Shottki. Spetsialnyi kurs, MK NMU, M., 1995