Weak solutions of linear equations of Sobolev type and semigroups of operators
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 797-813.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there is an infinitely differentiable semigroup for the equation $L\dot u=Mu$ if the $(p,\psi(\tau))$-condition introduced in this paper holds for the pair of operators $(L,M)$. In the case when the strong $(p,\psi(\tau))$-condition holds we have found the set of one-valued solubility of the weakened Cauchy problem for this equation. Our results supplement the theory of degenerate semigroups of operators and generalize in part the theorem on the generators of semigroups of class $(A)_\infty$ to the case of degenerate semigroups. We investigate the kernels and images of the semigroups constructed and consider various examples of operators for which the $(p,\psi(\tau))$-condition (the strong $(p,\psi(\tau))$-condition) holds.
@article{IM2_2003_67_4_a4,
     author = {V. E. Fedorov},
     title = {Weak solutions of linear equations of {Sobolev} type and semigroups of operators},
     journal = {Izvestiya. Mathematics },
     pages = {797--813},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a4/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - Weak solutions of linear equations of Sobolev type and semigroups of operators
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 797
EP  - 813
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a4/
LA  - en
ID  - IM2_2003_67_4_a4
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T Weak solutions of linear equations of Sobolev type and semigroups of operators
%J Izvestiya. Mathematics 
%D 2003
%P 797-813
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a4/
%G en
%F IM2_2003_67_4_a4
V. E. Fedorov. Weak solutions of linear equations of Sobolev type and semigroups of operators. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 797-813. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a4/

[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[2] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[3] Sviridyuk G. A., Fedorov V. E., “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl

[4] Sviridyuk G. A., Fedorov V. E., “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. matem. zhurn., 39:3 (1998), 604–616 | MR

[5] Favini A., Yagi A., “Multivalued linear operators and degenerate evolution equations”, Ann. Mat. pur. ed appl., CLXIII (1993), 353–384 | DOI | MR

[6] Fedorov V. E., “Beskonechno differentsiruemye polugruppy operatorov s yadrami”, Sib. matem. zhurn., 40:6 (1999), 1409–1421 | MR | Zbl

[7] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[8] Fedorov V. E., Polugruppy i gruppy operatorov s yadrami, Chelyab. gos. un-t, Chelyabinsk, 1998 | MR | Zbl

[9] Rutkas A. G., “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[10] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948

[11] Fedorov V. E., “O gladkosti reshenii lineinykh uravnenii sobolevskogo tipa”, Differents. uravneniya, 37:12 (2001), 1646–1649 | MR | Zbl

[12] Sviridyuk G. A., Kuznetsov G. A., “Ob otnositelno silnoi $p$-sektorialnosti lineinykh operatorov”, Dokl. RAN, 365:6 (1999), 736–738 | MR | Zbl

[13] Sviridyuk G. A., Kuznetsov G. A., “Ob otnositelnoi $p$-sektorialnosti differentsialnykh operatorov”, Neklassicheskie uravneniya matematicheskoi fiziki, IM SO RAN, Novosibirsk, 1998, 49–52 | MR