On the standard conjecture for complex Abelian schemes over smooth projective curves
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 597-635

Voir la notice de l'article provenant de la source Math-Net.Ru

We reduce the Hodge conjecture for Abelian varieties to the question of the existence of an algebraic isomorphism $H^2(C,R^{2d-i}\pi_\ast\mathbb Q)\widetilde\rightarrow, H^0(C,R^i\pi_\ast\mathbb Q)$ for all $i\geqslant 2$ and all principally polarized complex Abelian schemes $\pi\colon X\to C$ of relative dimension $d$ over smooth projective curves. If the canonically defined Hodge cycles $\alpha_i(X/C)\in H^0(C,R^i\pi_\ast\mathbb Q)\otimes H^0(C,R^i\pi_\ast\mathbb Q)$ are algebraic for all integers $i\geqslant 2$, then the Grothendieck standard conjecture $B(X)$ on the algebraicity of the operators $\Lambda$ and $\ast$ holds for $X$. We prove $B(X)$ for an Abelian scheme under the assumption that $\operatorname{End}(X_s)=\mathbb Z$ for some geometric fibre $X_s$ of non-exceptional dimension.
@article{IM2_2003_67_3_a7,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for complex {Abelian} schemes over smooth projective curves},
     journal = {Izvestiya. Mathematics },
     pages = {597--635},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for complex Abelian schemes over smooth projective curves
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 597
EP  - 635
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/
LA  - en
ID  - IM2_2003_67_3_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for complex Abelian schemes over smooth projective curves
%J Izvestiya. Mathematics 
%D 2003
%P 597-635
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/
%G en
%F IM2_2003_67_3_a7
S. G. Tankeev. On the standard conjecture for complex Abelian schemes over smooth projective curves. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 597-635. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/