On the standard conjecture for complex Abelian schemes over smooth projective curves
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 597-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

We reduce the Hodge conjecture for Abelian varieties to the question of the existence of an algebraic isomorphism $H^2(C,R^{2d-i}\pi_\ast\mathbb Q)\widetilde\rightarrow, H^0(C,R^i\pi_\ast\mathbb Q)$ for all $i\geqslant 2$ and all principally polarized complex Abelian schemes $\pi\colon X\to C$ of relative dimension $d$ over smooth projective curves. If the canonically defined Hodge cycles $\alpha_i(X/C)\in H^0(C,R^i\pi_\ast\mathbb Q)\otimes H^0(C,R^i\pi_\ast\mathbb Q)$ are algebraic for all integers $i\geqslant 2$, then the Grothendieck standard conjecture $B(X)$ on the algebraicity of the operators $\Lambda$ and $\ast$ holds for $X$. We prove $B(X)$ for an Abelian scheme under the assumption that $\operatorname{End}(X_s)=\mathbb Z$ for some geometric fibre $X_s$ of non-exceptional dimension.
@article{IM2_2003_67_3_a7,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for complex {Abelian} schemes over smooth projective curves},
     journal = {Izvestiya. Mathematics },
     pages = {597--635},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for complex Abelian schemes over smooth projective curves
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 597
EP  - 635
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/
LA  - en
ID  - IM2_2003_67_3_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for complex Abelian schemes over smooth projective curves
%J Izvestiya. Mathematics 
%D 2003
%P 597-635
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/
%G en
%F IM2_2003_67_3_a7
S. G. Tankeev. On the standard conjecture for complex Abelian schemes over smooth projective curves. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 597-635. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a7/

[1] André Y., “Pour une théorie inconditionnelle des motifs”, Publ. Math. IHES, 83 (1996), 5–49 | MR | Zbl

[2] Arakelov S. Yu., “Semeistva algebraicheskikh krivykh s fiksirovannymi vyrozhdeniyami”, Izv. AN SSSR. Ser. matem., 35:6 (1971), 1269–1293 | MR | Zbl

[3] Burbaki N., Gruppy i algebry Li, 1972 ; 1976; Мир, М., 1978 | Zbl

[4] Chzhen Sh.-Sh., Kompleksnye mnogoobraziya, IL, M., 1961

[5] Deligne P., “Théorème de Lefschetz et critères de dégénérescence de suites spectrales”, Publ. Math. IHES, 35 (1968), 259–278 | MR

[6] Deligne P., “Théorie de Hodge, II”, Publ. Math. IHES, 40 (1971), 5–57 | MR | Zbl

[7] Deligne P., “La conjecture de Weil pour les surfaces $\mathrm{K}3$”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[8] Faltings G., Chai Ch.-L., “Degeneration of Abelian varieties”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 22, Springer-Verlag, Berlin–Heidelberg–N. Y. –London–Paris–Tokyo–Hong Kong–Barselona, 1990 | MR | Zbl

[9] Fulton W., Intersection theory, Springer-Verlag, Berlin–Heidelberg–N. Y.–Tokyo, 1984 | MR | Zbl

[10] Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties”, J. D. Lewis, A survey of the Hodge conjecture, Second edition, CRM Monograph Series, 10, Centre de Recherches Mathématiques Université de Montréal, 1999, 297–356

[11] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[12] Grothendieck A., “Standard conjectures on algebraic cycles”, Algebr. Geom., Oxford Univ. Press, London, 1969, 193–199 | MR

[13] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Int. Congr. Math. (Cambridge, MA, 1950), 1, Amer. Math. Soc., Providence, 1952, 182–192 | MR

[14] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386 | MR

[15] Kleiman S. L., “The standard conjectures”, Proc. Symp. Pure Math. Part I, 55 (1994), 3–20 | MR | Zbl

[16] Lang S., Abelian varieties, Interscience, N. Y., 1959 | MR

[17] Lang S., Fundamentals of Diophantine geometry, Springer-Verlag, N. Y.–Berlin–Heidelberg–Tokyo, 1983 | MR

[18] Lange H., Birkenhake C., Complex Abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer-Verlag, Berlin, 1992 | MR | Zbl

[19] Lieberman D., “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90 (1968), 366–374 | DOI | MR | Zbl

[20] Manin Yu. I., “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Matem. sb., 77(119) (1968), 475–507 | MR | Zbl

[21] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[22] Milne J. S., “Lefschetz motives and the Tate conjecture”, Compositio Math., 117 (1999), 45–76 | DOI | MR | Zbl

[23] Mumford D., “Families of abelian varieties”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., 9, Amer. Math. Soc., Providence, 1966, 347–352 | MR

[24] Mumford D., “A note on paper: Shimura, Discontinuous groups and abelian varieties”, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[25] Pohlmann H. J., “Algebraic cycles on abelian varieties of complex multiplication type”, Ann. Math., 88:1 (1968), 161–180 | DOI | MR | Zbl

[26] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[27] Shioda T., “What is known about the Hodge conjecture?”, Adv. Stud. Pure Math., 1 (1983), 55–68 | MR | Zbl

[28] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[29] Tankeev S. G., “Tsikly na prostykh $5$-mernykh abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 793–823 | MR

[30] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 155–170 | MR

[31] Tankeev S. G., “Tsikly na abelevykh mnogoobraziyakh i isklyuchitelnye chisla”, Izv. RAN. Ser. matem., 60:2 (1996), 159–194 | MR | Zbl

[32] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Proc. Conf. (Purdue Univ., Lafayette, IN, 1963), Harper and Row, N. Y., 1965, 93–110 | MR

[33] Tate J., “Conjectures on algebraic cycles in $l$-adic cohomology”, Proc. Symposia in Pure Math. Part 1, 55 (1994), 71–83 | MR | Zbl

[34] Zarkhin Yu. G., “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl