c-fans and Newton polyhedra of algebraic varieties
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 439-460

Voir la notice de l'article provenant de la source Math-Net.Ru

To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus.
@article{IM2_2003_67_3_a2,
     author = {B. Ya. Kazarnovskii},
     title = {c-fans and {Newton} polyhedra of algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {439--460},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - c-fans and Newton polyhedra of algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 439
EP  - 460
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/
LA  - en
ID  - IM2_2003_67_3_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T c-fans and Newton polyhedra of algebraic varieties
%J Izvestiya. Mathematics 
%D 2003
%P 439-460
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/
%G en
%F IM2_2003_67_3_a2
B. Ya. Kazarnovskii. c-fans and Newton polyhedra of algebraic varieties. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 439-460. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/