c-fans and Newton polyhedra of algebraic varieties
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 439-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus.
@article{IM2_2003_67_3_a2,
     author = {B. Ya. Kazarnovskii},
     title = {c-fans and {Newton} polyhedra of algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {439--460},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - c-fans and Newton polyhedra of algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 439
EP  - 460
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/
LA  - en
ID  - IM2_2003_67_3_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T c-fans and Newton polyhedra of algebraic varieties
%J Izvestiya. Mathematics 
%D 2003
%P 439-460
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/
%G en
%F IM2_2003_67_3_a2
B. Ya. Kazarnovskii. c-fans and Newton polyhedra of algebraic varieties. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 439-460. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a2/

[1] Kemph G., Knudsen F., Mamford D., Saint-Donat B., Toroidal embeddings, 1, Lect. Notes Math., 339, Springer-Verlag, N. Y., 1973 | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i osobennosti integralov, Nauka, M., 1994 | MR

[3] Bernshtein D. N., “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego prilozh., 9:3 (1975), 1–4 | MR | Zbl

[4] Bernshtein D. N., Kushnirenko A. G., Khovanskii A. G., “Mnogogranniki Nyutona”, UMN, 31:3 (1976), 201 | MR

[5] Khovanskii A. G., “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 56–64 | MR | Zbl

[6] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz i ego prilozh., 12:1 (1978), 51–61 | MR

[7] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[8] Pukhlikov A. V., Khovanskii A. G., “Konechno additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR | Zbl

[9] Pukhlikov A. V., Khovanskii A. G., “Teorema Rimana–Rokha dlya integralov i summ kvazipolinomov po virtualnym mnogogrannikam”, Algebra i analiz, 4:4 (1992), 188–216 | MR | Zbl

[10] Stanley R. P., “The number of faces of a simplicial convex polytope”, Adv. Math., 35 (1989), 236–238 | DOI | MR

[11] McMullen P., “The polytope algebra”, Adv. Math., 78 (1989), 76–130 | DOI | MR | Zbl

[12] McMullen P., “On simple polytopes”, Invent. Math., 113 (1990), 419–444 | DOI | MR

[13] Timorin V. A., “Analog sootnoshenii Khodzha–Rimana dlya prostykh vypuklykh mnogogrannikov”, UMN, 54:2 (1999), 113–162 | MR | Zbl

[14] Kazarnovskii B. Ya., “Ukorocheniya sistem uravnenii, idealov i mnogoobrazii”, Izv. RAN. Ser. matem., 63:3 (1999), 119–132 ; “Письмо в редакцию”, Изв. РАН. Сер. матем., 64:1 (2000), 224 | MR | Zbl | MR

[15] Kazarnovskii B. Ya., “Eksponentsialnye analiticheskie mnozhestva”, Funkts. analiz i ego prilozh., 31:2 (1997), 15–26 | MR | Zbl

[16] Gelfond O. A., “O srednem chisle kornei sistem golomorfnykh pochti periodicheskikh uravnenii”, UMN, 39:1 (1984), 123–124 | MR | Zbl

[17] Kazarnovskii B. Ya., “O nulyakh eksponentsialnykh summ”, DAN SSSR, 257:4 (1981), 804–808 | MR | Zbl

[18] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i korni sistem eksponentsialnykh summ”, Funkts. analiz i ego prilozh., 18:4 (1984), 40–49 | MR | Zbl

[19] Khovanskii A. G., Malochleny, Fazis, M., 1997 | MR

[20] Minkovski H., “Volumen und Oberflashe”, Math. Ann., 57 (1903)

[21] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. 1–4”, Matem. sb., 2:5 (1937), 947–972 ; Матем. сб., 2:6 (1937), 1205–1238 ; Матем. сб., 3:1 (1938), 27–46 ; Матем. сб., 3:2 (1938), 227–251 | MR | Zbl | Zbl | Zbl

[22] Issledovaniya po metricheskoi teorii poverkhnostei, sbornik perevodov, Mir, M., 1980 | MR

[23] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl

[24] Burago Yu. D., “Geometriya poverkhnostei v evklidovykh prostranstvakh”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 5–97

[25] Bedford E., Taylor B. A., “The Dirichlet problem for a complex Monge–Ampere equations”, Invent. Math., 37:2 (1976), 1–44 | DOI | MR | Zbl

[26] Brion M., “Piecewise polynomial functions, convex polytopes and enumerative geometry”, Banach center publ., 36, Inst. of Math. Polish Acad. Sci., Warszawa, 1996, 25–44 | MR | Zbl

[27] Fulton W., Sturmfels B., Intersection theory on toric varieties, arxiv.org/abs/math/9403002 | MR