Delzant models of moduli spaces
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 365-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every genus $g$ we construct a smooth, complete, rational polarized algebraic variety $(DM_g,H)$ together with an effective normal crossing divisor $D=\cup D_i$ such that for every moduli space $M_\Sigma(2,0)$ of semistable topologically trivial vector bundles of rank 2 on an algebraic curve $\Sigma$ of genus $g$ there is a holomorphic isomorphism $f\colon M_\Sigma(2,0)\setminus K_g\to DM_g \setminus D$, where $K_g$ is the Kummer variety of the Jacobian of $\Sigma$, sending the polarization of $DM_g$ to the theta divisor of the moduli space. This isomorphism induces isomorphisms of the spaces $H^0(M_\Sigma(2,0),\Theta^k)$ and $H^0(DM_g,H^k)$.
@article{IM2_2003_67_2_a6,
     author = {A. N. Tyurin},
     title = {Delzant models of moduli spaces},
     journal = {Izvestiya. Mathematics },
     pages = {365--376},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Delzant models of moduli spaces
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 365
EP  - 376
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/
LA  - en
ID  - IM2_2003_67_2_a6
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Delzant models of moduli spaces
%J Izvestiya. Mathematics 
%D 2003
%P 365-376
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/
%G en
%F IM2_2003_67_2_a6
A. N. Tyurin. Delzant models of moduli spaces. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/

[1] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116 (1988), 315–339 | MR | Zbl

[2] Goldman W., “The symplectic nature of fundamental groups of surfaces”, Adv. in Math., 54 (1984), 200–225 | DOI | MR | Zbl

[3] Donaldson S., “Gluing techniques in the cohomology of moduli spaces”, Topological methods in modern mathematics (Stony Brook, 1991), Publish or Perish, Houston, 1993, 137–170 | MR | Zbl

[4] Tyurin A. N., Three mathematical facets of $\operatorname{SU}(2)$-spin networks, Preprint 35/2000 of Instituto Superior Tecnico, Lisbon

[5] Fulton W., Introduction to toric varieties, Ann. of Math. Studies, 131, Princeton University Press, Princeton, 1993 | MR | Zbl

[6] Tyurin A. N., Lattice gauge theory and the Florentino conjecture, Preprint 5/2001 of Instituto Superior Tecnico, Lisbon

[7] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[8] Guillemin V., Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Birkhäuser, Boston–Basel–Berlin, 1994 | MR

[9] Audin M., “Lectures on gauge theory and integrable systems”, Gauge theory and symplectic geometry (Montreal, 1995), NATO ASI Series, Kluwer, 1997, 1–48 | MR | Zbl

[10] Florentino C., Symmetries and moment polyhedrons, Preprint, Stony Brook, 1999

[11] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nucl. Phys., 479 (1996), 243–259 | DOI | MR | Zbl

[12] Jeffrey L. C., Hurtubise J. C., “Representations with Weighted Frames and Framed Parabolic Bundles”, Canad. J. Math., 52:6 (2000), 1235–1268 | MR | Zbl