Delzant models of moduli spaces
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 365-376

Voir la notice de l'article provenant de la source Math-Net.Ru

For every genus $g$ we construct a smooth, complete, rational polarized algebraic variety $(DM_g,H)$ together with an effective normal crossing divisor $D=\cup D_i$ such that for every moduli space $M_\Sigma(2,0)$ of semistable topologically trivial vector bundles of rank 2 on an algebraic curve $\Sigma$ of genus $g$ there is a holomorphic isomorphism $f\colon M_\Sigma(2,0)\setminus K_g\to DM_g \setminus D$, where $K_g$ is the Kummer variety of the Jacobian of $\Sigma$, sending the polarization of $DM_g$ to the theta divisor of the moduli space. This isomorphism induces isomorphisms of the spaces $H^0(M_\Sigma(2,0),\Theta^k)$ and $H^0(DM_g,H^k)$.
@article{IM2_2003_67_2_a6,
     author = {A. N. Tyurin},
     title = {Delzant models of moduli spaces},
     journal = {Izvestiya. Mathematics },
     pages = {365--376},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Delzant models of moduli spaces
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 365
EP  - 376
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/
LA  - en
ID  - IM2_2003_67_2_a6
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Delzant models of moduli spaces
%J Izvestiya. Mathematics 
%D 2003
%P 365-376
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/
%G en
%F IM2_2003_67_2_a6
A. N. Tyurin. Delzant models of moduli spaces. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a6/