Zero mean curvature surfaces of mixed type in Minkowski space
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 209-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate zero mean curvature surfaces in the Minkowski space ${\mathbb R}^3_1$ such that their first fundamental quadratic form changes signature. Part of such a surface is space-like and part is time-like. We obtain complete information about the structure of the set of points where the surface changes type and prove the related existence and uniqueness theorems.
@article{IM2_2003_67_2_a1,
     author = {V. A. Klyachin},
     title = {Zero mean curvature surfaces of mixed type in {Minkowski} space},
     journal = {Izvestiya. Mathematics },
     pages = {209--224},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Zero mean curvature surfaces of mixed type in Minkowski space
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 209
EP  - 224
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/
LA  - en
ID  - IM2_2003_67_2_a1
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Zero mean curvature surfaces of mixed type in Minkowski space
%J Izvestiya. Mathematics 
%D 2003
%P 209-224
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/
%G en
%F IM2_2003_67_2_a1
V. A. Klyachin. Zero mean curvature surfaces of mixed type in Minkowski space. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/