Zero mean curvature surfaces of mixed type in Minkowski space
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 209-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate zero mean curvature surfaces in the Minkowski space ${\mathbb R}^3_1$ such that their first fundamental quadratic form changes signature. Part of such a surface is space-like and part is time-like. We obtain complete information about the structure of the set of points where the surface changes type and prove the related existence and uniqueness theorems.
@article{IM2_2003_67_2_a1,
     author = {V. A. Klyachin},
     title = {Zero mean curvature surfaces of mixed type in {Minkowski} space},
     journal = {Izvestiya. Mathematics },
     pages = {209--224},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Zero mean curvature surfaces of mixed type in Minkowski space
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 209
EP  - 224
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/
LA  - en
ID  - IM2_2003_67_2_a1
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Zero mean curvature surfaces of mixed type in Minkowski space
%J Izvestiya. Mathematics 
%D 2003
%P 209-224
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/
%G en
%F IM2_2003_67_2_a1
V. A. Klyachin. Zero mean curvature surfaces of mixed type in Minkowski space. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a1/

[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[3] Weinstein T., “Inextendible conformal realizations of Lorentz surfaces in Minkowski 3-space”, Michigan Math. J., 40 (1993), 545–559 | DOI | MR | Zbl

[4] Milnor T. K., “Entire timelike minimal surfaces in $E^3_1$ 3-space”, Michigan Math. J., 37 (1990), 163–177 | DOI | MR | Zbl

[5] Larkin N. A., Novikov V. A., Yanenko N. N., Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR | Zbl

[6] Aronson G., “Extension of functions satysfying Lipschitz conditions”, Arkiv för Mathematik, 6:28 (1967), 551–561 | DOI | MR

[7] Klyachin V. A., Miklyukov V. M., “Geometricheskoe stroenie trubok i lent nulevoi srednei krivizny v prostranstve Minkovskogo”, Nauchnye shkoly VolGU. Geometricheskii analiz, Izd-vo VolGU, Volgograd, 1999, 204–244

[8] Nikolskii S. M., Kurs matematicheskogo analiza, T. 1, 2, Nauka, M., 1990 | MR

[9] Klyachin A. A., Miklyukov V. M., “Suschestvovanie reshenii s osobennostyami uravneniya maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Matem. sb., 184:9 (1993), 103–124 | MR | Zbl

[10] Warner F. W., Foundations of differentiable manifolds and Lie groups, Springer-Verlag, N.Y., 1983 | MR

[11] Bitsadze A. V., Vvedenie v teoriyu analiticheskikh funktsii kompleksnoi peremennoi, Nauka, M., 1984

[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[13] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1985 | MR