Quantum communication complexity of symmetric predicates
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 145-159

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely (that is, up to a logarithmic factor) characterize the bounded-error quantum communication complexity of every predicate $f(x,y)$ $x,y\subseteq [n]$) depending only on $|x\cap y|$. More precisely, given a predicate $D$ on $\{0,1,\dots,n\}$, we put \begin{align*} \ell_0(D)\overset{\mathrm{def}}{=}\max\{\ell\mid 1\leqslant\ell\leqslant n/2\land D(\ell)\not\equiv D(\ell-1)\}, \\ \ell_1(D)\overset{\mathrm{def}}{=}\max\{n-\ell\mid n/2\leqslant\ell\land D(\ell) \not\equiv D(\ell+1)\}. \end{align*} Then the bounded-error quantum communication complexity of $f_D(x,y)=D(|x\cap y|)$ is equal to $\sqrt{n\ell_0(D)}+\ell_1(D)$ (up to a logarithmic factor). In particular, the complexity of the set disjointness predicate is equal to $\Omega(\sqrt n\,)$. This result holds both in the model with prior entanglement and in the model without it.
@article{IM2_2003_67_1_a7,
     author = {A. A. Razborov},
     title = {Quantum communication complexity of symmetric predicates},
     journal = {Izvestiya. Mathematics },
     pages = {145--159},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a7/}
}
TY  - JOUR
AU  - A. A. Razborov
TI  - Quantum communication complexity of symmetric predicates
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 145
EP  - 159
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a7/
LA  - en
ID  - IM2_2003_67_1_a7
ER  - 
%0 Journal Article
%A A. A. Razborov
%T Quantum communication complexity of symmetric predicates
%J Izvestiya. Mathematics 
%D 2003
%P 145-159
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a7/
%G en
%F IM2_2003_67_1_a7
A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 145-159. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a7/