Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 91-119

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the existence of a continuous selection for the metric projection to the set of $n$-link piecewise-linear functions in the space $C[0,1]$. We show that there is a continuous selection if and only if $n=1$ or $n=2$. We establish that there is a continuous $\varepsilon$-selection to $L$ ($L\subset C[0,1]$) if $L$ belongs to a certain class of sets that contains, in particular, the set of algebraic rational fractions and the set of piecewise-linear functions. We construct an example showing that sometimes there is no $\varepsilon$-selection for a set of splines of degree $d>1$.
@article{IM2_2003_67_1_a5,
     author = {E. D. Livshits},
     title = {Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$},
     journal = {Izvestiya. Mathematics },
     pages = {91--119},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 91
EP  - 119
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/
LA  - en
ID  - IM2_2003_67_1_a5
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
%J Izvestiya. Mathematics 
%D 2003
%P 91-119
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/
%G en
%F IM2_2003_67_1_a5
E. D. Livshits. Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 91-119. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/