Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 91-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the existence of a continuous selection for the metric projection to the set of $n$-link piecewise-linear functions in the space $C[0,1]$. We show that there is a continuous selection if and only if $n=1$ or $n=2$. We establish that there is a continuous $\varepsilon$-selection to $L$ ($L\subset C[0,1]$) if $L$ belongs to a certain class of sets that contains, in particular, the set of algebraic rational fractions and the set of piecewise-linear functions. We construct an example showing that sometimes there is no $\varepsilon$-selection for a set of splines of degree $d>1$.
@article{IM2_2003_67_1_a5,
     author = {E. D. Livshits},
     title = {Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$},
     journal = {Izvestiya. Mathematics },
     pages = {91--119},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 91
EP  - 119
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/
LA  - en
ID  - IM2_2003_67_1_a5
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
%J Izvestiya. Mathematics 
%D 2003
%P 91-119
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/
%G en
%F IM2_2003_67_1_a5
E. D. Livshits. Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 91-119. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a5/

[1] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannye s nailuchshim priblizhennym predstavleniem funktsii”, Sochineniya, T. II, Izd-vo AN SSSR, M.–L., 1859, 151–235

[2] Konyagin S. V., “O nepreryvnom operatore obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[3] Maehly H., Witzgall Ch., “Tschebyscheff-Approximationen in kleinen Intervalen. II: Stetigkeitssätze für gebrochene rationale Approximationen”, Num. Math., 2:5 (1960), 293–307 | DOI | MR

[4] Berdyshev V. I., “Prostranstva s ravnomerno nepreryvnoi metricheskoi proektsiei”, Matem. zametki, 17:1 (1975), 3–12 | Zbl

[5] Tsarkov I. G., “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl

[6] Marinov A. V., “Otsenki ustoichivosti nepreryvnoi selektsii dlya metricheskoi pochti-proektsii”, Matem. zametki, 55:4 (1994), 47–53 | MR | Zbl

[7] Albrekht P. V., “Poryadki modulei nepreryvnosti operatorov pochti nailuchshego priblizheniya”, Matem. sb., 185:9 (1994), 3–28 | MR

[8] Nürnberger G., Sommer M., “Characterization of continious selection of the metric projection for spline functions”, J. Approx. Theory, 22 (1978), 320–330 | DOI | MR | Zbl

[9] Livshits E. D., “O nepreryvnom pochti nailuchshem priblizhenii v prostranstve $C{[0,1]}$”, Funkts. analiz i ego prilozh., 35:1 (2001), 85–87 | MR | Zbl

[10] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee otklonyayuschikhsya ot nulya, OGIZ, M.–L., 1948 | MR | Zbl

[11] Kolmogorov A. N. Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[12] Kirchberger P., Über Tschebyschefsche Annaherungsmethoden, Inaugural-dissertation, Gottingen, 1902 | Zbl

[13] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR