The universality of $L$-functions associated with new forms
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 77-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the universality theorem for $L$-functions of new parabolic forms. It concerns the uniform approximation of analytic functions by shifts of these $L$-functions. This theorem together with the Shimura–Taniyama conjecture (now proved) yields the universality of $L$-functions of non-singular elliptic curves over the field of rational numbers. The universality of $L$-functions implies that they are functionally independent.
@article{IM2_2003_67_1_a4,
     author = {A. P. Laurincikas and K. Matsumoto and J. Steuding},
     title = {The universality of $L$-functions associated with new forms},
     journal = {Izvestiya. Mathematics },
     pages = {77--90},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/}
}
TY  - JOUR
AU  - A. P. Laurincikas
AU  - K. Matsumoto
AU  - J. Steuding
TI  - The universality of $L$-functions associated with new forms
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 77
EP  - 90
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/
LA  - en
ID  - IM2_2003_67_1_a4
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%A K. Matsumoto
%A J. Steuding
%T The universality of $L$-functions associated with new forms
%J Izvestiya. Mathematics 
%D 2003
%P 77-90
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/
%G en
%F IM2_2003_67_1_a4
A. P. Laurincikas; K. Matsumoto; J. Steuding. The universality of $L$-functions associated with new forms. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/