The universality of $L$-functions associated with new forms
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the universality theorem for $L$-functions of new parabolic forms. It concerns the uniform approximation of analytic functions by shifts of these $L$-functions. This theorem together with the Shimura–Taniyama conjecture (now proved) yields the universality of $L$-functions of non-singular elliptic curves over the field of rational numbers. The universality of $L$-functions implies that they are functionally independent.
@article{IM2_2003_67_1_a4,
     author = {A. P. Laurincikas and K. Matsumoto and J. Steuding},
     title = {The universality of $L$-functions associated with new forms},
     journal = {Izvestiya. Mathematics },
     pages = {77--90},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/}
}
TY  - JOUR
AU  - A. P. Laurincikas
AU  - K. Matsumoto
AU  - J. Steuding
TI  - The universality of $L$-functions associated with new forms
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 77
EP  - 90
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/
LA  - en
ID  - IM2_2003_67_1_a4
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%A K. Matsumoto
%A J. Steuding
%T The universality of $L$-functions associated with new forms
%J Izvestiya. Mathematics 
%D 2003
%P 77-90
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/
%G en
%F IM2_2003_67_1_a4
A. P. Laurincikas; K. Matsumoto; J. Steuding. The universality of $L$-functions associated with new forms. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a4/

[1] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[2] Voronin S. M., “Teorema o raspredelenii znachenii dzeta-funktsii Rimana”, DAN SSSR, 221:4 (1975), 771 | MR | Zbl

[3] Voronin S. M., Issledovanie povedeniya dzeta-funktsii Rimana, Dis. $\dots$ kand. fiz.- matem. nauk, MI AN SSSR, M., 1972

[4] Voronin S. M., Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. ... d-ra fiz.-matem. nauk, MI AN SSSR, M., 1977

[5] Voronin S. M., “Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov”, Matem. zametki, 24:6 (1978), 879–884 | MR | Zbl

[6] Laurinčikas A., Limit theorems for the Riemann zeta-function, Kluwer Academic Publishers, Dordrecht, 1996 | MR

[7] Reich A., “Universelle Wertverteilung von Eulerprodukten”, Nach. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1977, 1–17 | MR | Zbl

[8] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph.D. Thesis, University of Michigan, 1979

[9] Reich A., “Zur Universalität und Hypertranszendenz der Dedekindschen Zetafunktion”, Abh. Braunschweig. Wiss. Ges., 33 (1982), 187–203 | MR

[10] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1981

[11] Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1992), 319–334 | DOI | MR

[12] Laurinčikas A., “Distribution des valeurs de certaines series de Dirichlet”, C. R. Acad. Sci. Paris. Serie A, 289 (1979), 43–45 | MR | Zbl

[13] Laurinčikas A., “Sur les series de Dirichlet et les polynomes trigonometriques”, Sem. de Théorie des Nombres, Année 1978–1979 (1979), no. 24 | MR | Zbl

[14] Laurinčikas A., “Value distribution of generating Dirichlet series of multiplicative functions”, Liet. Matem. Rink., 22:1 (1982), 101–111 | MR | Zbl

[15] Laurinčikas A., “On the universality theorem”, Liet. Matem. Rink., 23:3 (1983), 53–62 | MR | Zbl

[16] Laurinčikas A., “On the universality theorem, II”, Liet. Matem. Rink., 24:2 (1984), 113–121 | MR | Zbl

[17] Laurinčikas A., “On the universality of the Riemann zeta-function”, Lith. Math. J., 35 (1995), 399–402 | MR | Zbl

[18] Laurinčikas A., “On the limit distribution of the Matsumoto zeta-function. I; II”, Acta Arith., 79 (1997), 31–39 ; Liet. Matem. Rink., 36 (1996), 464–485 | MR | Zbl | MR | Zbl

[19] Laurinčikas A., “The universality of the Lerch zeta-functions”, Lith. Math. J., 37 (1997), 275–280 | DOI | MR | Zbl

[20] Laurinčikas A., “On the Lerch zeta-function with rational parameters”, Lith. Math. J., 38 (1998), 89–97 | DOI | MR | Zbl

[21] Laurinčikas A., “On the Matsumoto zeta-function”, Acta Arith., 84 (1998), 1–16 | MR | Zbl

[22] Laurinčikas A., “The universality of Dirichlet series attached to finite Abelian groups”, Number Theory, Proceedings of the Turku Symposium on Number theory in memory of Kustaa Inkeri (1999), eds. M. Jutila, T. Metsänkylä, Walter de Gruyter, Berlin–N.Y., 2001, 179–192 | MR

[23] Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl

[24] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | DOI | MR | Zbl

[25] Matsumoto K., “The mean values and universality of Rankin–Selberg $L$-functions”, Number Theory, Proceedings of the Turku Symposium on Number theory in memory of Kustaa Inkeri (1999), eds. M. Jutila, T. Metsänkylä, Walter de Gruyter, Berlin–N. Y., 2001, 201–221 | MR

[26] Iwaniec H., Topics in Classical Automorphic Forms, AMS, 1997 | MR | Zbl

[27] Murty M. R., Murty V. K., Non-vanishing of $L$-functions and applications, Birkhäuser, Berlin, 1997 | MR | Zbl

[28] Matsumoto K., “A probabilistic study on the value-distribution of Dirichlet series attached to certain cusp forms”, Nagoya Math. J., 116 (1989), 123–138 | MR | Zbl

[29] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. Math., 141 (1995), 443–551 | DOI | MR | Zbl

[30] Breuil C., Conrad B., Diamond F., Taylor R., “On the modularity of elliptic curves over $\mathbb{Q}$: wild $3$-adic exercises”, J. Amer. Math. Soc., 14 (2001), 843–939 | DOI | MR | Zbl

[31] Voronin S. M., “O differentsialnoi nezavisimosti $\zeta$-funktsii”, DAN SSSR, 209:6 (1973), 1264–1266 | MR | Zbl

[32] Voronin S. M., “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., XXVII (1975), 493–503 | MR

[33] Murty M. R., “Oscillations of Fourier coefficients of modular forms”, Math. Ann., 262 (1983), 431–446 | DOI | MR | Zbl

[34] Shimura G., “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc., 31:3 (1975), 79–98 | DOI | MR | Zbl

[35] Titchmarsh E. C., The theory of functions, Oxford University Press, Oxford, 1939 | MR | Zbl

[36] Walsh J. L., Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., 20, 1960 | MR | Zbl