Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_1_a3, author = {V. G. Kanovei and M. Reeken}, title = {Some new results on {Borel} irreducibility of equivalence relations}, journal = {Izvestiya. Mathematics }, pages = {55--76}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a3/} }
V. G. Kanovei; M. Reeken. Some new results on Borel irreducibility of equivalence relations. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 55-76. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a3/
[1] Becker H., Kechris A. S., The descriptive set theory of Polish group actions, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[2] Farah I., “Analytic quotients: theory of liftings for quotients over analytic ideals on the integers”, Mem. Amer. Math. Soc., 148(702) (2000) ; XVI, 177 pp. | MR
[3] Friedman H., Stanley L., “A Borel reducibility theory for classes of countable structures”, J. Symbolic Logic, 54:3 (1989), 894–914 | DOI | MR | Zbl
[4] Friedman H., “Borel and Baire reducibility”, Fund. Math., 164:1 (2000), 61–69 | MR | Zbl
[5] Hjorth G., “Orbit cardinals: on the effective cardinalities arising as quotient spaces of the form $X/G$ where $G$ acts on a Polish space $X$”, Israel J. Math., 111 (1999), 221–261 | DOI | MR | Zbl
[6] Hjorth G., Classification and orbit equivalence relations, American Math. Society, Providence, 2000 | MR | Zbl
[7] Hjorth G., Kechris A. S., “New dichotomies for Borel equivalence relations”, Bull. Symbolic Logic, 3:3 (1997), 329–346 | DOI | MR | Zbl
[8] Jackson S., Kechris A. S., Louveau A., “Countable Borel equivalence relations”, J. Math. Logic, 2:1 (2002), 1–80 | DOI | MR | Zbl
[9] Kanovei V., “An Ulm-type classification theorem for equivalence relations in Solovay model”, J. Symbolic Logic, 62:4 (1997), 1333–1351 | DOI | MR | Zbl
[10] Kanovei V., “Ulm classification of analytic equivalence relations in generic universes”, Math. Logic Quart., 44:3 (1998), 287–303 | DOI | MR | Zbl
[11] Kechris A. S., “Rigidity properties of Borel ideals on the integers”, Topology Appl., 85:1–3 (1998), 195–205 | DOI | MR | Zbl
[12] Kechris A. S., “New directions in descriptive set theory”, Bull. Symbolic Logic, 5:2 (1999), 161–174 | DOI | MR | Zbl
[13] Kechris A. S., “Actions of Polish groups and classification problems”, Analysis and Logic, London Mathematical Society Lecture Note Series, Cambridge University Press, 2002, 168–237 | MR
[14] Louveau A., “A separation theorem for $\Sigma_1^1$ sets”, Trans. Amer. Math. Soc., 260 (1980), 363–378 | DOI | MR
[15] Solecki S., “Analytic ideals and their applications”, Ann. Pure Appl. Logic, 99:3 (1999), 51–72 | DOI | MR | Zbl