A~dyadic analogue of Wiener's Tauberian theorem and some related questions
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 29-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dyadic analogue is proved of Wiener's Tauberian convolution theorem for two functions. Closedness criteria are established for the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon y\geqslant 0\}$ for a given function $f\in L(\mathbb R_+)$ or $f\in L^2(\mathbb R_+)$. A consequence of these criteria is that the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon 0\leqslant y\leqslant 1\}$ for a given function $f\in L([0,1))$ ($f\in L^2([0,1))$) is dense in the space $L([0,1))$ ($L^2([0,1))$) if and only if all the Fourier coefficients of $f$ with respect to the orthonormalized Walsh system on $[0,1)$ are non-zero.
@article{IM2_2003_67_1_a2,
     author = {B. I. Golubov},
     title = {A~dyadic analogue of {Wiener's} {Tauberian} theorem and some related questions},
     journal = {Izvestiya. Mathematics },
     pages = {29--53},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - A~dyadic analogue of Wiener's Tauberian theorem and some related questions
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 29
EP  - 53
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/
LA  - en
ID  - IM2_2003_67_1_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T A~dyadic analogue of Wiener's Tauberian theorem and some related questions
%J Izvestiya. Mathematics 
%D 2003
%P 29-53
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/
%G en
%F IM2_2003_67_1_a2
B. I. Golubov. A~dyadic analogue of Wiener's Tauberian theorem and some related questions. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 29-53. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/

[1] Wiener N., “Tauberian theorems”, Annals of Math., 33 (1932), 1–100 | DOI | MR | Zbl

[2] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatgiz, M., 1963

[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[4] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR

[5] Fine N., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl

[6] Golubov B. I., “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | MR | Zbl

[7] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR | Zbl

[8] Agaev G. N., “Teorema tipa Vinera dlya ryadov po funktsiyam Uolsha”, DAN SSSR, 142:4 (1962), 751–753 | MR | Zbl

[9] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[10] Khalmosh P., Teoriya mery, IL, M., 1953

[11] Rudin W., Fourier analysis on groups, Interscience Publishers, N. Y.–London, 1962 | MR | Zbl

[12] Edvards R., Ryady Fure v sovremennom izlozhenii, 2, Mir, M., 1985