Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_1_a2, author = {B. I. Golubov}, title = {A~dyadic analogue of {Wiener's} {Tauberian} theorem and some related questions}, journal = {Izvestiya. Mathematics }, pages = {29--53}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/} }
B. I. Golubov. A~dyadic analogue of Wiener's Tauberian theorem and some related questions. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 29-53. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a2/
[1] Wiener N., “Tauberian theorems”, Annals of Math., 33 (1932), 1–100 | DOI | MR | Zbl
[2] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatgiz, M., 1963
[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[4] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR
[5] Fine N., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl
[6] Golubov B. I., “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | MR | Zbl
[7] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR | Zbl
[8] Agaev G. N., “Teorema tipa Vinera dlya ryadov po funktsiyam Uolsha”, DAN SSSR, 142:4 (1962), 751–753 | MR | Zbl
[9] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR
[10] Khalmosh P., Teoriya mery, IL, M., 1953
[11] Rudin W., Fourier analysis on groups, Interscience Publishers, N. Y.–London, 1962 | MR | Zbl
[12] Edvards R., Ryady Fure v sovremennom izlozhenii, 2, Mir, M., 1985