Nilpotent operators and discretely concave functions
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a pair of submodules of a module over a discrete valuation ring, we construct a function of two integer variables. We show that this function is discretely concave and, conversely, every discretely concave function of two integer variables arises in this way.
@article{IM2_2003_67_1_a0,
     author = {V. I. Danilov and G. A. Koshevoy},
     title = {Nilpotent operators and discretely concave functions},
     journal = {Izvestiya. Mathematics },
     pages = {1--15},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a0/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - G. A. Koshevoy
TI  - Nilpotent operators and discretely concave functions
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1
EP  - 15
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a0/
LA  - en
ID  - IM2_2003_67_1_a0
ER  - 
%0 Journal Article
%A V. I. Danilov
%A G. A. Koshevoy
%T Nilpotent operators and discretely concave functions
%J Izvestiya. Mathematics 
%D 2003
%P 1-15
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a0/
%G en
%F IM2_2003_67_1_a0
V. I. Danilov; G. A. Koshevoy. Nilpotent operators and discretely concave functions. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a0/

[1] Berenstein A. D., Zelevinsky A. V., “Triple multiplicities for $sl(r+1)$ and the spectrum of the exterior algebra of adjoint representation”, J. of Algebraic Combinatorics, 1 (1992), 7–22 | DOI | MR | Zbl

[2] Britz T., Fomin S., “Finite posets and Ferrers Shapes”, Advances in Mathematics, 158 (2001), 86–127 | DOI | MR | Zbl

[3] Fulton W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. of the Amer. Math. Soc., 37 (2000), 209–249 | DOI | MR | Zbl

[4] Green C., Kleitman D. J., “The structure of Sperner $k$-families”, J. Combin. Theory. Ser. A, 20 (1976), 41–68 | DOI | MR

[5] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[6] Saks M., “Dilworth numbers, incidence maps and product partial orders”, SIAM J. Algebraic Discrete Math., 1 (1980), 211–215 | DOI | MR | Zbl