Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1271-1304

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following question: are any two holomorphically equivalent Reinhardt domains necessarily algebraically equivalent? The answer is known to be positive in the one-dimensional case. We get a positive answer in dimension two. Apart from connectedness, no restrictions are imposed on the domains.
@article{IM2_2002_66_6_a7,
     author = {P. A. Soldatkin},
     title = {Holomorphic equivalence of {Reinhardt} domains in~$\mathbb C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1304},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/}
}
TY  - JOUR
AU  - P. A. Soldatkin
TI  - Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1271
EP  - 1304
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/
LA  - en
ID  - IM2_2002_66_6_a7
ER  - 
%0 Journal Article
%A P. A. Soldatkin
%T Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
%J Izvestiya. Mathematics 
%D 2002
%P 1271-1304
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/
%G en
%F IM2_2002_66_6_a7
P. A. Soldatkin. Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1271-1304. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/