Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1271-1304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following question: are any two holomorphically equivalent Reinhardt domains necessarily algebraically equivalent? The answer is known to be positive in the one-dimensional case. We get a positive answer in dimension two. Apart from connectedness, no restrictions are imposed on the domains.
@article{IM2_2002_66_6_a7,
     author = {P. A. Soldatkin},
     title = {Holomorphic equivalence of {Reinhardt} domains in~$\mathbb C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1304},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/}
}
TY  - JOUR
AU  - P. A. Soldatkin
TI  - Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1271
EP  - 1304
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/
LA  - en
ID  - IM2_2002_66_6_a7
ER  - 
%0 Journal Article
%A P. A. Soldatkin
%T Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$
%J Izvestiya. Mathematics 
%D 2002
%P 1271-1304
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/
%G en
%F IM2_2002_66_6_a7
P. A. Soldatkin. Holomorphic equivalence of Reinhardt domains in~$\mathbb C^2$. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1271-1304. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a7/

[1] Sunada T., “Holomorphic equivalence problem for bounded Reinhardt domains”, Math. Ann., 235:2 (1978), 111–128 | DOI | MR | Zbl

[2] Kruzhilin N. G., “Avtomorfizmy giperbolicheskikh oblastei Reinkharta”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 16–40 | MR | Zbl

[3] Shimizu S., “Automorphisms of bounded Reinhardt domains”, Japan J. Math., 15 (1989), 385–414 | MR | Zbl

[4] Shimizu S., “Automorphisms and equivalence of tube domains with bounded base”, Math. Ann., 315 (1999), 295–320 | DOI | MR | Zbl

[5] Shimizu S., “A classification of two-dimensional tube domains”, Amer. J. of Math., 122 (2000), 1289–1308 | DOI | MR | Zbl

[6] Fuks B. A., Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, T. 1, Fizmatgiz, M., 1962 | MR

[7] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995 | MR | Zbl

[8] Shabat B. V., Vvedenie v kompleksnyi analiz, T. 2, Nauka, M., 1985 | MR

[9] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[10] Maltsev A. I., “On the theory of the Lie groups in the large. I; II”, Matem. sb., 16(58):2 (1945), 163–190 ; 19(61):3 (1946), 523–524 | Zbl

[11] Yamabe H., “On an arcwise connected subgroups of a Lie groups”, Osaka Math. J., 2 (1950), 13–14 | MR | Zbl

[12] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR

[13] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[14] Uryson P. S., “O lokalno svyaznykh kontinuumakh”, Trudy po topologii i drugim oblastyam matematiki, T. 2, GITTL, M.–L., 1951 | MR

[15] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968 | Zbl