Birationally rigid Fano hypersurfaces
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1243-1269

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a smooth Fano hypersurface $V=V_M\subset\mathbb P^M$, $M\geqslant 6$, is birationally superrigid. In particular, it cannot be fibred into uniruled varieties by a non-trivial rational map, and every birational map of $V$ onto a minimal Fano variety of the same dimension is a biregular isomorphism. The proof is based on the method of maximal singularities combined with the connectedness principle of Shokurov and Kollar.
@article{IM2_2002_66_6_a6,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1243--1269},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1243
EP  - 1269
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/
LA  - en
ID  - IM2_2002_66_6_a6
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano hypersurfaces
%J Izvestiya. Mathematics 
%D 2002
%P 1243-1269
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/
%G en
%F IM2_2002_66_6_a6
A. V. Pukhlikov. Birationally rigid Fano hypersurfaces. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1243-1269. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/