Birationally rigid Fano hypersurfaces
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1243-1269.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a smooth Fano hypersurface $V=V_M\subset\mathbb P^M$, $M\geqslant 6$, is birationally superrigid. In particular, it cannot be fibred into uniruled varieties by a non-trivial rational map, and every birational map of $V$ onto a minimal Fano variety of the same dimension is a biregular isomorphism. The proof is based on the method of maximal singularities combined with the connectedness principle of Shokurov and Kollar.
@article{IM2_2002_66_6_a6,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid {Fano} hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1243--1269},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid Fano hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1243
EP  - 1269
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/
LA  - en
ID  - IM2_2002_66_6_a6
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid Fano hypersurfaces
%J Izvestiya. Mathematics 
%D 2002
%P 1243-1269
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/
%G en
%F IM2_2002_66_6_a6
A. V. Pukhlikov. Birationally rigid Fano hypersurfaces. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1243-1269. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a6/

[1] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86(128):1(9) (1971), 140–166 | MR | Zbl

[2] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Notes Series, 281, Cambridge University Press, 2000, 259–312 | MR | Zbl

[3] Corti A., Mella M., Birational geometry of terminal quartic 3-folds, I, arXiv: math.AG/0102096

[4] Corti A., Pukhlikov A., Reid M., “Fano 3-fold hypersurfaces”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Notes Series, 281, Cambridge University Press, 2000, 175–258 | MR | Zbl

[5] Esnault H., Viehweg E., Lectures on vanishing theorems, DMV-Seminar, 20, Birkhäuser, 1992 | MR | Zbl

[6] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[7] Gizatullin M., Fano's inequality is a mistake, arXiv: math.AG/0202069

[8] Gizatullin M., Fano's inequality is also false for three-dimensional quadric, arXiv: math.AG/0202117

[9] Gizatullin M., Fano's inequality is false for a simple Cremona transformation of five-dimensional projective space, arXiv: math.AG/0202138

[10] Iskovskikh V. A., “Biratsionalnaya zhestkost giperpoverkhnostei Fano v ramkakh teorii Mori”, UMN, 56:2 (2001), 3–86 | MR | Zbl

[11] Iskovskikh V. A., Pukhlikov A. V., “Birational automorphisms of multi-dimensional algebraic varieties”, J. Math. Sci., 82:4 (1996), 3528–3613 | DOI | MR | Zbl

[12] Kollár J., et al., “Flips and Abundance for Algebraic Threefolds”, Asterisque, 211 (1993)

[13] Kawamata Y., “A generalization of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl

[14] Pukhlikov A. V., “Birational automorphisms of four-dimensional quintics”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[15] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 278–289 | MR | Zbl

[16] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[17] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[18] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit Birational Geometry of Threefolds, London Mathematical Society Lecture Notes Series, 281, Cambridge University Press, 2000, 73–100 | MR | Zbl

[19] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[20] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, Crelle J. für die reine und angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[21] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano s izolirovannymi osobennostyami”, Matem. sb., 193:3 (2002), 135–160 | MR

[22] Park J., “Birational maps of del Pezzo fibrations”, Crelle J. für die reine und angew. Math., 538 (2001), 213–221 | DOI | MR | Zbl

[23] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 355–390 | MR | Zbl

[24] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–162 | MR

[25] Cheltsov I. A., On the sextic, septic and octic, Preprint, 2000 | MR

[26] Cheltsov I. A., “Logkanonicheskie porogi na giperpoverkhnostyakh”, Matem. sb., 192:8 (2001), 155–172 | MR | Zbl

[27] Cheltsov I. A., Park J., Log-canonical thresholds and generalized Eckard points, arXiv: math.AG/0003121

[28] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl

[29] Viehweg E., “Vanishing theorems”, Crelle J. für die reine und angew. Math., 335 (1982), 1–8 | MR | Zbl