On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1171-1218.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a theory of locally summable generalized entropy solutions (g.e. solutions) of the Cauchy problem for a first-order non-homogeneous quasilinear equation with continuous flux vector satisfying a linear restriction on its growth. We prove the existence of greatest and least g.e. solutions, suggest sufficient conditions for uniqueness of g.e. solutions, prove several versions of the comparison principle, and obtain estimates for the $L^p$-norms of solution with respect to the space variables. We establish the uniqueness of g.e. solutions in the case when the input data are periodic functions of the space variables.
@article{IM2_2002_66_6_a4,
     author = {E. Yu. Panov},
     title = {On generalized entropy solutions of the {Cauchy} problem for a~first-order quasilinear equation},
     journal = {Izvestiya. Mathematics },
     pages = {1171--1218},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1171
EP  - 1218
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/
LA  - en
ID  - IM2_2002_66_6_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
%J Izvestiya. Mathematics 
%D 2002
%P 1171-1218
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/
%G en
%F IM2_2002_66_6_a4
E. Yu. Panov. On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1171-1218. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/

[1] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. of Functional Analysis, 171 (2000), 15–33 | DOI | MR | Zbl

[2] Barthélemy L., “Probléme d'obstacle pour une équation quasilinéar du premier order”, Sci. Toulouse, 9:2 (1988), 137–159 | MR

[3] Barthélemy L., Bénilan Ph., “Subsolution for abstract evolution equations”, Potential Analysis, 1 (1992), 93–113 | DOI | MR | Zbl

[4] Bénilan Ph., Equation d'evolution dans un space de Banach quelconque et applications, These de Doctorat d'Etat, Centre d'Orsey. Universite de Paris-Sud., 1972

[5] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl

[6] Bénilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, NoDEA, 3 (1996), 395–419 | DOI | MR | Zbl

[7] Crandall M. G., “The semigroup approach to first order quasilinear equations in several space variables”, Israel J. Math., 12 (1972), 108–122 | DOI | MR

[8] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 5-e izd., Nauka, M., 1988 | MR

[9] Goritsky A. Yu., Panov E. Yu., “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russian Journal of Mathematical Physics, 6:4 (1999), 492–494 | MR | Zbl

[10] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl

[11] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[12] Kruzhkov S. N., Khildebrand F., “Zadacha Koshi dlya kvazilineinykh uravnenii pervogo poryadka v sluchae, kogda oblast zavisimosti ot nachalnykh dannykh beskonechna”, Vestn. Mosk. un-ta, 1974, no. 1, 93–100

[13] Kruzhkov S. N., Andreyanov P. A., “K nelokalnoi teorii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka v klasse lokalno-summiruemykh funktsii”, DAN SSSR, 220:1 (1975), 23–26 | MR | Zbl

[14] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, DAN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[15] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Annali Univ. Ferrara-Sez., XL, 1994–1995, 31–53 | MR

[16] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1991

[17] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[18] Panov E. Yu., “O zadache Koshi dlya kvazilineinogo uravneniya pervogo poryadka na mnogoobrazii”, Diff. uravneniya, 33:2 (1997), 257–266 | MR | Zbl

[19] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i superreshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Diff. uravneniya, 37:2 (2001), 249–257 | MR

[20] Panov E. Yu., “O naibolshikh i naimenshikh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 193:5 (2002), 95–112 | MR | Zbl