On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1171-1218

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a theory of locally summable generalized entropy solutions (g.e. solutions) of the Cauchy problem for a first-order non-homogeneous quasilinear equation with continuous flux vector satisfying a linear restriction on its growth. We prove the existence of greatest and least g.e. solutions, suggest sufficient conditions for uniqueness of g.e. solutions, prove several versions of the comparison principle, and obtain estimates for the $L^p$-norms of solution with respect to the space variables. We establish the uniqueness of g.e. solutions in the case when the input data are periodic functions of the space variables.
@article{IM2_2002_66_6_a4,
     author = {E. Yu. Panov},
     title = {On generalized entropy solutions of the {Cauchy} problem for a~first-order quasilinear equation},
     journal = {Izvestiya. Mathematics },
     pages = {1171--1218},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1171
EP  - 1218
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/
LA  - en
ID  - IM2_2002_66_6_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation
%J Izvestiya. Mathematics 
%D 2002
%P 1171-1218
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/
%G en
%F IM2_2002_66_6_a4
E. Yu. Panov. On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1171-1218. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/