Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_6_a4, author = {E. Yu. Panov}, title = {On generalized entropy solutions of the {Cauchy} problem for a~first-order quasilinear equation}, journal = {Izvestiya. Mathematics }, pages = {1171--1218}, publisher = {mathdoc}, volume = {66}, number = {6}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/} }
TY - JOUR AU - E. Yu. Panov TI - On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation JO - Izvestiya. Mathematics PY - 2002 SP - 1171 EP - 1218 VL - 66 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/ LA - en ID - IM2_2002_66_6_a4 ER -
E. Yu. Panov. On generalized entropy solutions of the Cauchy problem for a~first-order quasilinear equation. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1171-1218. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a4/
[1] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. of Functional Analysis, 171 (2000), 15–33 | DOI | MR | Zbl
[2] Barthélemy L., “Probléme d'obstacle pour une équation quasilinéar du premier order”, Sci. Toulouse, 9:2 (1988), 137–159 | MR
[3] Barthélemy L., Bénilan Ph., “Subsolution for abstract evolution equations”, Potential Analysis, 1 (1992), 93–113 | DOI | MR | Zbl
[4] Bénilan Ph., Equation d'evolution dans un space de Banach quelconque et applications, These de Doctorat d'Etat, Centre d'Orsey. Universite de Paris-Sud., 1972
[5] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl
[6] Bénilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, NoDEA, 3 (1996), 395–419 | DOI | MR | Zbl
[7] Crandall M. G., “The semigroup approach to first order quasilinear equations in several space variables”, Israel J. Math., 12 (1972), 108–122 | DOI | MR
[8] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 5-e izd., Nauka, M., 1988 | MR
[9] Goritsky A. Yu., Panov E. Yu., “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russian Journal of Mathematical Physics, 6:4 (1999), 492–494 | MR | Zbl
[10] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl
[11] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[12] Kruzhkov S. N., Khildebrand F., “Zadacha Koshi dlya kvazilineinykh uravnenii pervogo poryadka v sluchae, kogda oblast zavisimosti ot nachalnykh dannykh beskonechna”, Vestn. Mosk. un-ta, 1974, no. 1, 93–100
[13] Kruzhkov S. N., Andreyanov P. A., “K nelokalnoi teorii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka v klasse lokalno-summiruemykh funktsii”, DAN SSSR, 220:1 (1975), 23–26 | MR | Zbl
[14] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, DAN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[15] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Annali Univ. Ferrara-Sez., XL, 1994–1995, 31–53 | MR
[16] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1991
[17] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl
[18] Panov E. Yu., “O zadache Koshi dlya kvazilineinogo uravneniya pervogo poryadka na mnogoobrazii”, Diff. uravneniya, 33:2 (1997), 257–266 | MR | Zbl
[19] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i superreshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Diff. uravneniya, 37:2 (2001), 249–257 | MR
[20] Panov E. Yu., “O naibolshikh i naimenshikh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 193:5 (2002), 95–112 | MR | Zbl