Multifrequency parametric resonance in a~non-linear wave equation
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1131-1145

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem $$ u_{tt}+\varepsilon u_t+\biggl(1+\varepsilon\sum_{k=1}^m\alpha_k\cos 2\varphi_k\biggr)u=a^2u_{xx}-u^2u_t,\qquad u\big|_{x=0}=u\big|_{x=\pi}=0, $$ where $0\varepsilon\ll 1$, $a>0$, $\varphi_k=\sigma_kt+c_k$, $k=1,\dots,m$. We show that a suitable choice of a positive integer $m$ and real parameters $\alpha_k$, $\sigma_k$, $k=1,\dots,m$, enables us to make this problem have any prescribed number of exponentially stable time-quasiperiodic solutions bifurcating from zero.
@article{IM2_2002_66_6_a2,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Multifrequency parametric resonance in a~non-linear wave equation},
     journal = {Izvestiya. Mathematics },
     pages = {1131--1145},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Multifrequency parametric resonance in a~non-linear wave equation
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1131
EP  - 1145
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a2/
LA  - en
ID  - IM2_2002_66_6_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Multifrequency parametric resonance in a~non-linear wave equation
%J Izvestiya. Mathematics 
%D 2002
%P 1131-1145
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a2/
%G en
%F IM2_2002_66_6_a2
A. Yu. Kolesov; N. Kh. Rozov. Multifrequency parametric resonance in a~non-linear wave equation. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1131-1145. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a2/