The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the tensor product of a unitary representation of $G=\mathrm{SL}_2(\mathbb R)$ with a highest weight and the complex-conjugate representation with a lowest weight. The representation space is acted upon by the direct product $G\times G$. We decompose the resulting representation into a direct integral with respect to the diagonal subgroup $G\subset G\times G$. This direct integral is realized as the $L^2$ space on the product of a circle with coordinate $\phi\in[0,2\pi)$ and the semiline $s\geqslant 0$, where $s$ enumerates unitary representations of $G$ of the principal series. We get explicit formulae for the action of the Lie algebra $\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ on this direct integral. It turns out that the representation operators are second order differential operators with respect to $\phi$ and second order difference operators with respect to $s$, and the difference operators are expressed in terms of the shift $s\mapsto s+i$ in the imaginary direction.
@article{IM2_2002_66_5_a3,
     author = {Yu. A. Neretin},
     title = {The action of an overalgebra on the {Plancherel} decomposition and shift operators in the imaginary direction},
     journal = {Izvestiya. Mathematics },
     pages = {1035--1046},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1035
EP  - 1046
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/
LA  - en
ID  - IM2_2002_66_5_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
%J Izvestiya. Mathematics 
%D 2002
%P 1035-1046
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/
%G en
%F IM2_2002_66_5_a3
Yu. A. Neretin. The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/

[1] Andrews G. R., Askey R., Roy R., Special functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[2] Van den Ban E. P., Schlichtkrull H., “A residue calculus for root systems”, Compositio Math., 123:1 (2000), 27–72 | DOI | MR | Zbl

[3] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. Math., 48 (1947), 568–640 | DOI | MR | Zbl

[4] Berezin F. A., “O svyazi mezhdu ko- i kontravariantnymi simvolami operatorov na klassicheskikh kompleksnykh simmetricheskikh prostranstvakh”, DAN SSSR, 241 (1978), 15–17 | MR | Zbl

[5] De Branges L., “Tensor product spaces”, J. Math. Anal. Appl., 38 (1972), 109–148 | DOI | MR | Zbl

[6] Cherednik I., Harish-Chandra transform and difference operators, arXiv: math.AG/9706010

[7] Delorme P., “Formule de Plancherel pour les espaces symétriques réductifs”, Ann. of Math., 147 (1998), 417–452 | DOI | MR | Zbl

[8] Van Dijk H., Hille S. C., “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147 (1997), 109–139 | DOI | MR | Zbl

[9] Gelfand I. M., Naimark M. I., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta. im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl

[10] Gindikin S. G., Karpelevich F. I., “Mera Plansherelya dlya rimanovykh simmetricheskikh prostranstv nepolozhitelnoi krivizny”, DAN SSSR, 145 (1962), 252–255 | MR

[11] Gindikin S. G., Karpelevich F. I., “Ob odnom integrale, svyazannom s rimanovymi simmetricheskimi prostranstvami nepolozhitelnoi krivizny”, Izv. AN SSSR. Ser. matem., 30 (1966), 1147–1156 | MR | Zbl

[12] Harinck P., “Plancherel formula pour $\operatorname{GL}(n,\mathbb C)/\operatorname{U}(p,q)$”, J. Reine Angew. Math., 428 (1992), 45–95 | MR | Zbl

[13] Harinck P., “Fonctions orbitales sur $G_\mathbb C/G_\mathbb R$. Formula d'inversion des integrales orbitales et formula de Plancherel”, J. Funct. Anal., 153 (1998), 52–107 | DOI | MR | Zbl

[14] Harish-Chandra, “Harmonic analysis on real semisimple groups. III: The Maas–Selberg relations and the Plancherel formula”, Ann. Math., 104 (1976), 117–201 | DOI | MR | Zbl

[15] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[16] Koekoek R., Swarttouw R. F., Askey scheme of hypergeometric orthogonal polynomials and their $q$-analogues, Delft University of Technology, 1994 ; available via http://aw.twi.tudelft.nl/~koekoek/research.html | Zbl

[17] Koornwinder T. H., “Jacobi functions and analysis on noncompact symmetric spaces”, Special functions: group theoretical aspects and applications, eds. R. Askey, T. H. Koornwinder, W. Schempp, D. Reidel Publ. Co, Dordrecht–Boston, 1984, 1–85 | MR | Zbl

[18] Makarevich B. O., “Otkrytye orbity reduktivnykh grupp v simmetricheskikh $R$-prostranstvakh”, Matem. sb., 91(133) (1973), 390–401 | MR | Zbl

[19] Molchanov V. F., “Tenzornye proizvedeniya unitarnykh predstavlenii trekhmernoi gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 860–891 | MR | Zbl

[20] Molchanov V. F., “Formula Plansherelya dlya giperboloidov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 147 (1980), 65–85 | MR

[21] Molchanov V. F., “Formula Plansherelya dlya psevdorimanovykh simmetricheskikh prostranstv ranga 1”, DAN SSSR, 290:3 (1986), 545–549 | MR

[22] Molchanov V. F., “Garmonicheskii analiz na odnorodnykh prostranstvakh”, Nekommutativnyi garmonicheskii analiz-II, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fundamentalnye napravleniya, 59, VINITI, M., 1990, 5–144 | MR

[23] Neretin Yu. A., “Psevdorimanovy simmetricheskie prostranstva: odnotipnye realizatsii i otkrytye vlozheniya v grassmaniany”, Zapiski nauch. sem. POMI, 256, POMI, SPb., 145–167 | MR | Zbl

[24] Neretin Yu. A., “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189 (2001), 336–408 | DOI | MR

[25] Neretin Yu. A., “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 | MR | Zbl

[26] Neretin Yu. A., “Matrix balls, radial analysis of Berezin kernels and hypergeometric determinants”, Moscow Math. J., 1 (2001), 157–220 | MR | Zbl

[27] Pukanszky L., “On the Kronecker products of irreducible unitary representations of the $2\times 2$ real unimodular group”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl

[28] Rosengren H., “Multilinear Hankel forms of higher order and orthogonal polynomials”, Math. Scand., 82:1 (1998), 53–88 | MR | Zbl

[29] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 233–272 | DOI | MR | Zbl

[30] Unterberger A., Upmeier H., “The Berezin transform and invariant differential operators”, Comm. Math. Phys., 164 (1994), 563–597 | DOI | MR | Zbl

[31] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya $\operatorname{SL}_2(R)$, gde $R$ – koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR

[32] Weyl H., “Über gewonliche lineare Differentialgleichungen mis singularen Stellen und ihre Eigenfunktionen 2 Note”, Nachr. Konig. Gess. Wissen. Gottingen. Math.-Phys., 1910, 442–467 ; Weyl H., Gessamelte Abhandlungen, Bd. 1., Springer, 1968, 224–247 | Zbl | MR