The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the tensor product of a unitary representation of
$G=\mathrm{SL}_2(\mathbb R)$ with a highest weight and the complex-conjugate representation with a lowest weight. The representation space is acted upon by the direct product $G\times G$. We decompose the resulting representation into a direct integral with respect to the diagonal subgroup $G\subset G\times G$. This direct integral is realized as the $L^2$ space on the product of a circle with coordinate $\phi\in[0,2\pi)$ and the semiline $s\geqslant 0$, where $s$ enumerates unitary representations of $G$ of the principal series.
We get explicit formulae for the action of the Lie algebra
$\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ on this direct integral. It turns out that the representation operators are second order differential operators with respect to $\phi$ and second order difference operators with respect to $s$, and the difference operators are expressed in terms of the shift $s\mapsto s+i$ in the imaginary direction.
@article{IM2_2002_66_5_a3,
author = {Yu. A. Neretin},
title = {The action of an overalgebra on the {Plancherel} decomposition and shift operators in the imaginary direction},
journal = {Izvestiya. Mathematics },
pages = {1035--1046},
publisher = {mathdoc},
volume = {66},
number = {5},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/}
}
TY - JOUR AU - Yu. A. Neretin TI - The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction JO - Izvestiya. Mathematics PY - 2002 SP - 1035 EP - 1046 VL - 66 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/ LA - en ID - IM2_2002_66_5_a3 ER -
Yu. A. Neretin. The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/