Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_5_a3, author = {Yu. A. Neretin}, title = {The action of an overalgebra on the {Plancherel} decomposition and shift operators in the imaginary direction}, journal = {Izvestiya. Mathematics }, pages = {1035--1046}, publisher = {mathdoc}, volume = {66}, number = {5}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/} }
TY - JOUR AU - Yu. A. Neretin TI - The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction JO - Izvestiya. Mathematics PY - 2002 SP - 1035 EP - 1046 VL - 66 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/ LA - en ID - IM2_2002_66_5_a3 ER -
Yu. A. Neretin. The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/
[1] Andrews G. R., Askey R., Roy R., Special functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[2] Van den Ban E. P., Schlichtkrull H., “A residue calculus for root systems”, Compositio Math., 123:1 (2000), 27–72 | DOI | MR | Zbl
[3] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. Math., 48 (1947), 568–640 | DOI | MR | Zbl
[4] Berezin F. A., “O svyazi mezhdu ko- i kontravariantnymi simvolami operatorov na klassicheskikh kompleksnykh simmetricheskikh prostranstvakh”, DAN SSSR, 241 (1978), 15–17 | MR | Zbl
[5] De Branges L., “Tensor product spaces”, J. Math. Anal. Appl., 38 (1972), 109–148 | DOI | MR | Zbl
[6] Cherednik I., Harish-Chandra transform and difference operators, arXiv: math.AG/9706010
[7] Delorme P., “Formule de Plancherel pour les espaces symétriques réductifs”, Ann. of Math., 147 (1998), 417–452 | DOI | MR | Zbl
[8] Van Dijk H., Hille S. C., “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147 (1997), 109–139 | DOI | MR | Zbl
[9] Gelfand I. M., Naimark M. I., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta. im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl
[10] Gindikin S. G., Karpelevich F. I., “Mera Plansherelya dlya rimanovykh simmetricheskikh prostranstv nepolozhitelnoi krivizny”, DAN SSSR, 145 (1962), 252–255 | MR
[11] Gindikin S. G., Karpelevich F. I., “Ob odnom integrale, svyazannom s rimanovymi simmetricheskimi prostranstvami nepolozhitelnoi krivizny”, Izv. AN SSSR. Ser. matem., 30 (1966), 1147–1156 | MR | Zbl
[12] Harinck P., “Plancherel formula pour $\operatorname{GL}(n,\mathbb C)/\operatorname{U}(p,q)$”, J. Reine Angew. Math., 428 (1992), 45–95 | MR | Zbl
[13] Harinck P., “Fonctions orbitales sur $G_\mathbb C/G_\mathbb R$. Formula d'inversion des integrales orbitales et formula de Plancherel”, J. Funct. Anal., 153 (1998), 52–107 | DOI | MR | Zbl
[14] Harish-Chandra, “Harmonic analysis on real semisimple groups. III: The Maas–Selberg relations and the Plancherel formula”, Ann. Math., 104 (1976), 117–201 | DOI | MR | Zbl
[15] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR
[16] Koekoek R., Swarttouw R. F., Askey scheme of hypergeometric orthogonal polynomials and their $q$-analogues, Delft University of Technology, 1994 ; available via http://aw.twi.tudelft.nl/~koekoek/research.html | Zbl
[17] Koornwinder T. H., “Jacobi functions and analysis on noncompact symmetric spaces”, Special functions: group theoretical aspects and applications, eds. R. Askey, T. H. Koornwinder, W. Schempp, D. Reidel Publ. Co, Dordrecht–Boston, 1984, 1–85 | MR | Zbl
[18] Makarevich B. O., “Otkrytye orbity reduktivnykh grupp v simmetricheskikh $R$-prostranstvakh”, Matem. sb., 91(133) (1973), 390–401 | MR | Zbl
[19] Molchanov V. F., “Tenzornye proizvedeniya unitarnykh predstavlenii trekhmernoi gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 860–891 | MR | Zbl
[20] Molchanov V. F., “Formula Plansherelya dlya giperboloidov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 147 (1980), 65–85 | MR
[21] Molchanov V. F., “Formula Plansherelya dlya psevdorimanovykh simmetricheskikh prostranstv ranga 1”, DAN SSSR, 290:3 (1986), 545–549 | MR
[22] Molchanov V. F., “Garmonicheskii analiz na odnorodnykh prostranstvakh”, Nekommutativnyi garmonicheskii analiz-II, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fundamentalnye napravleniya, 59, VINITI, M., 1990, 5–144 | MR
[23] Neretin Yu. A., “Psevdorimanovy simmetricheskie prostranstva: odnotipnye realizatsii i otkrytye vlozheniya v grassmaniany”, Zapiski nauch. sem. POMI, 256, POMI, SPb., 145–167 | MR | Zbl
[24] Neretin Yu. A., “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189 (2001), 336–408 | DOI | MR
[25] Neretin Yu. A., “Indeksnoe gipergeometricheskoe preobrazovanie i imitatsiya analiza yader Berezina na giperbolicheskikh prostranstvakh”, Matem. sb., 192:3 (2001), 83–114 | MR | Zbl
[26] Neretin Yu. A., “Matrix balls, radial analysis of Berezin kernels and hypergeometric determinants”, Moscow Math. J., 1 (2001), 157–220 | MR | Zbl
[27] Pukanszky L., “On the Kronecker products of irreducible unitary representations of the $2\times 2$ real unimodular group”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl
[28] Rosengren H., “Multilinear Hankel forms of higher order and orthogonal polynomials”, Math. Scand., 82:1 (1998), 53–88 | MR | Zbl
[29] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 233–272 | DOI | MR | Zbl
[30] Unterberger A., Upmeier H., “The Berezin transform and invariant differential operators”, Comm. Math. Phys., 164 (1994), 563–597 | DOI | MR | Zbl
[31] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya $\operatorname{SL}_2(R)$, gde $R$ – koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR
[32] Weyl H., “Über gewonliche lineare Differentialgleichungen mis singularen Stellen und ihre Eigenfunktionen 2 Note”, Nachr. Konig. Gess. Wissen. Gottingen. Math.-Phys., 1910, 442–467 ; Weyl H., Gessamelte Abhandlungen, Bd. 1., Springer, 1968, 224–247 | Zbl | MR