The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the tensor product of a unitary representation of $G=\mathrm{SL}_2(\mathbb R)$ with a highest weight and the complex-conjugate representation with a lowest weight. The representation space is acted upon by the direct product $G\times G$. We decompose the resulting representation into a direct integral with respect to the diagonal subgroup $G\subset G\times G$. This direct integral is realized as the $L^2$ space on the product of a circle with coordinate $\phi\in[0,2\pi)$ and the semiline $s\geqslant 0$, where $s$ enumerates unitary representations of $G$ of the principal series. We get explicit formulae for the action of the Lie algebra $\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ on this direct integral. It turns out that the representation operators are second order differential operators with respect to $\phi$ and second order difference operators with respect to $s$, and the difference operators are expressed in terms of the shift $s\mapsto s+i$ in the imaginary direction.
@article{IM2_2002_66_5_a3,
     author = {Yu. A. Neretin},
     title = {The action of an overalgebra on the {Plancherel} decomposition and shift operators in the imaginary direction},
     journal = {Izvestiya. Mathematics },
     pages = {1035--1046},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1035
EP  - 1046
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/
LA  - en
ID  - IM2_2002_66_5_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
%J Izvestiya. Mathematics 
%D 2002
%P 1035-1046
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/
%G en
%F IM2_2002_66_5_a3
Yu. A. Neretin. The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1035-1046. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a3/