Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_4_a4, author = {Nguyen Khac Viet and M. Saito}, title = {On {Mordell--Weil} lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity}, journal = {Izvestiya. Mathematics }, pages = {789--805}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/} }
TY - JOUR AU - Nguyen Khac Viet AU - M. Saito TI - On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity JO - Izvestiya. Mathematics PY - 2002 SP - 789 EP - 805 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/ LA - en ID - IM2_2002_66_4_a4 ER -
%0 Journal Article %A Nguyen Khac Viet %A M. Saito %T On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity %J Izvestiya. Mathematics %D 2002 %P 789-805 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/ %G en %F IM2_2002_66_4_a4
Nguyen Khac Viet; M. Saito. On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/
[1] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, T. 1, 2, Mir, M., 1990
[2] Leng S., Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl
[3] Nguen Kkhak V., Saito M.-Kh., “O reshetkakh Mordella–Veilya negiperellipticheskogo tipa na poverkhnostyakh s $p_g=q=0$”, Dokl. RAN, 364:5 (1999), 596–598 | MR | Zbl
[4] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[5] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | MR | Zbl
[6] Bath W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verlag, N.Y., 1984 | MR
[7] Konno K., “Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces”, Ann. Sc. Norm. Pisa. Ser. IV, XX (1993), 575–595 | MR
[8] Konno K., Personal communication at Kinosaki's Symposium on “Algebraic Geometry”, November 7–10, 1995
[9] Konno K., “Clifford index and the slope of fibred surfaces”, J. Alg. Geom., 8:2 (1999), 207–220 | MR | Zbl
[10] Nakayama N., “Zariski-decomposition problem for pseudo-effective divisors”, Proc. of the meeting and the Workshop on “Algebraic Geometry and Hodge Theory”, V. 1. Math. Preprint Series, Hokkaido Universyty, 1990
[11] Nguyen Khac V., “On upperbounds of virtual Mordell–Weil ranks”, Osaka J. of Math., 34 (1997), 101–114 | MR | Zbl
[12] Nguyen Khac V., “On certain Mordell–Weil lattices of hyperelliptic type on rational surfaces”, J. Math. Sci., 102:2 (2000), 3938–3977 | DOI | MR | Zbl
[13] Saito M.-H., “On upperbounds of Mordell–Weil ranks of higher genus fibrations”, Proc. of the meeting and the Workshop on “Algebraic Geometry and Hodge Theory” at Hokkaido University (June 20–24, 1994), 26–35 | MR | Zbl
[14] Saito M.-H., “On Mordell–Weil lattices and certain Calabi–Yau 3-folds”, Talk at Kinosaki Symposium on “Algebraic Geometry” (November 7–10, 1995)
[15] Saito M.-H., Sakakibara K.-I., “On Mordell–Weil lattices of higher genus fibrations on rational surfaces”, J. of Math. of Kyoto Univ., 34:4 (1994), 859–871 | MR | Zbl
[16] Shioda T., “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Pauli, 39 (1990), 211–240 | MR | Zbl
[17] Shioda T., “Mordell–Weil lattices for higher genus fibration”, Proc. Japan Acad., 68A (1992), 247–250 | MR
[18] Shioda T., “Mordell–Weil lattices for higher genus fibrations over a curve”, New Trends in Algebraic Geometry, eds. K. Hulek et al, Cambridge Univ. Press, Cambridge, 1999, 359–373 | MR | Zbl
[19] Groups de Monadromie en Géometrie Algébrique, Lect. Notes. in Math., II, eds. P. Deligne, N. Katz, Springer-Verlag, Heidelberg, 1973 | Zbl