On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. We prove theorems on the structure and uniqueness of such lattices in the maximal case.
@article{IM2_2002_66_4_a4,
     author = {Nguyen Khac Viet and M. Saito},
     title = {On {Mordell--Weil} lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity},
     journal = {Izvestiya. Mathematics },
     pages = {789--805},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/}
}
TY  - JOUR
AU  - Nguyen Khac Viet
AU  - M. Saito
TI  - On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 789
EP  - 805
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/
LA  - en
ID  - IM2_2002_66_4_a4
ER  - 
%0 Journal Article
%A Nguyen Khac Viet
%A M. Saito
%T On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
%J Izvestiya. Mathematics 
%D 2002
%P 789-805
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/
%G en
%F IM2_2002_66_4_a4
Nguyen Khac Viet; M. Saito. On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/

[1] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, T. 1, 2, Mir, M., 1990

[2] Leng S., Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl

[3] Nguen Kkhak V., Saito M.-Kh., “O reshetkakh Mordella–Veilya negiperellipticheskogo tipa na poverkhnostyakh s $p_g=q=0$”, Dokl. RAN, 364:5 (1999), 596–598 | MR | Zbl

[4] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[5] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | MR | Zbl

[6] Bath W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verlag, N.Y., 1984 | MR

[7] Konno K., “Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces”, Ann. Sc. Norm. Pisa. Ser. IV, XX (1993), 575–595 | MR

[8] Konno K., Personal communication at Kinosaki's Symposium on “Algebraic Geometry”, November 7–10, 1995

[9] Konno K., “Clifford index and the slope of fibred surfaces”, J. Alg. Geom., 8:2 (1999), 207–220 | MR | Zbl

[10] Nakayama N., “Zariski-decomposition problem for pseudo-effective divisors”, Proc. of the meeting and the Workshop on “Algebraic Geometry and Hodge Theory”, V. 1. Math. Preprint Series, Hokkaido Universyty, 1990

[11] Nguyen Khac V., “On upperbounds of virtual Mordell–Weil ranks”, Osaka J. of Math., 34 (1997), 101–114 | MR | Zbl

[12] Nguyen Khac V., “On certain Mordell–Weil lattices of hyperelliptic type on rational surfaces”, J. Math. Sci., 102:2 (2000), 3938–3977 | DOI | MR | Zbl

[13] Saito M.-H., “On upperbounds of Mordell–Weil ranks of higher genus fibrations”, Proc. of the meeting and the Workshop on “Algebraic Geometry and Hodge Theory” at Hokkaido University (June 20–24, 1994), 26–35 | MR | Zbl

[14] Saito M.-H., “On Mordell–Weil lattices and certain Calabi–Yau 3-folds”, Talk at Kinosaki Symposium on “Algebraic Geometry” (November 7–10, 1995)

[15] Saito M.-H., Sakakibara K.-I., “On Mordell–Weil lattices of higher genus fibrations on rational surfaces”, J. of Math. of Kyoto Univ., 34:4 (1994), 859–871 | MR | Zbl

[16] Shioda T., “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Pauli, 39 (1990), 211–240 | MR | Zbl

[17] Shioda T., “Mordell–Weil lattices for higher genus fibration”, Proc. Japan Acad., 68A (1992), 247–250 | MR

[18] Shioda T., “Mordell–Weil lattices for higher genus fibrations over a curve”, New Trends in Algebraic Geometry, eds. K. Hulek et al, Cambridge Univ. Press, Cambridge, 1999, 359–373 | MR | Zbl

[19] Groups de Monadromie en Géometrie Algébrique, Lect. Notes. in Math., II, eds. P. Deligne, N. Katz, Springer-Verlag, Heidelberg, 1973 | Zbl