On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. We prove theorems on the structure and uniqueness of such lattices in the maximal case.
@article{IM2_2002_66_4_a4,
     author = {Nguyen Khac Viet and M. Saito},
     title = {On {Mordell--Weil} lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity},
     journal = {Izvestiya. Mathematics },
     pages = {789--805},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/}
}
TY  - JOUR
AU  - Nguyen Khac Viet
AU  - M. Saito
TI  - On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 789
EP  - 805
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/
LA  - en
ID  - IM2_2002_66_4_a4
ER  - 
%0 Journal Article
%A Nguyen Khac Viet
%A M. Saito
%T On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
%J Izvestiya. Mathematics 
%D 2002
%P 789-805
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/
%G en
%F IM2_2002_66_4_a4
Nguyen Khac Viet; M. Saito. On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/