On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. We prove theorems on the structure and uniqueness of such lattices in the maximal case.
@article{IM2_2002_66_4_a4,
author = {Nguyen Khac Viet and M. Saito},
title = {On {Mordell--Weil} lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity},
journal = {Izvestiya. Mathematics },
pages = {789--805},
publisher = {mathdoc},
volume = {66},
number = {4},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/}
}
TY - JOUR AU - Nguyen Khac Viet AU - M. Saito TI - On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity JO - Izvestiya. Mathematics PY - 2002 SP - 789 EP - 805 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/ LA - en ID - IM2_2002_66_4_a4 ER -
%0 Journal Article %A Nguyen Khac Viet %A M. Saito %T On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity %J Izvestiya. Mathematics %D 2002 %P 789-805 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/ %G en %F IM2_2002_66_4_a4
Nguyen Khac Viet; M. Saito. On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 789-805. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a4/