Tauberian theorems for generalized functions with values in Banach spaces
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 701-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

We state and prove Tauberian theorems of a new type. In these theorems we give sufficient conditions under which the values of a generalized function (distribution) that are assumed to lie in a locally convex topological space actually belong to some narrower (Banach) space. These conditions are stated in terms of “general class estimates” for the standard average of this generalized function with a fixed kernel belonging to a space of test functions. The applications of these theorems are based, in particular, on the fact that asymptotical (and some other) properties of the generalized functions under investigation can be described in terms of membership of certain Banach spaces. We apply these theorems to the study of asymptotic properties of solutions of the Cauchy problem for the heat equation in the class of generalized functions of small growth (tempered distributions), and to the study of Banach spaces of Besov–Nikol'skii type.
@article{IM2_2002_66_4_a2,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Tauberian theorems for generalized functions with values in {Banach} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {701--769},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Tauberian theorems for generalized functions with values in Banach spaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 701
EP  - 769
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a2/
LA  - en
ID  - IM2_2002_66_4_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Tauberian theorems for generalized functions with values in Banach spaces
%J Izvestiya. Mathematics 
%D 2002
%P 701-769
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a2/
%G en
%F IM2_2002_66_4_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Tauberian theorems for generalized functions with values in Banach spaces. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 701-769. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a2/

[1] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tauberova tipa dlya obobschennoi multiplikativnoi svertki”, Izv. RAN. Ser. matem., 64:1 (2000), 37–94 | MR | Zbl

[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[3] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[4] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[5] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[6] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[7] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberova teorema tipa Vinera dlya obobschennykh funktsii medlennogo rosta”, Matem. sb., 189:7 (1998), 91–130 | MR | Zbl

[8] Muramatu T., “On Besov Spaces and Sobolev Spaces of Generalized Functions Defined on a General Region”, Publ. Res. Inst. Math. Sci. Kyoto University, 9:2 (1974), 325–396 | DOI | MR | Zbl

[9] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[10] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[11] Danford N., Shvarts Dzh. T., Lineinye operatory. T. 1. Obschaya teoriya, Mir, M., 1962

[12] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR